

Status and plans of $\tau \to 3\mu$ at CMS

Manuel Giffels

Thomas Kreß Achim Stahl

III. Physikalisches Institut B RWTH Aachen

LHC-D Workshop 2006 - Flavour Physics, June 2006

Standard model

- In the Standard Model lepton numbers are conserved for each generation seperatly (lepton family number conservation)
- However there is no fundamental symmetry associated with this conservation law
- Up to now there is no evidence for LFV decays

```
\begin{array}{lll} \text{Current limits of LFV $\tau$-decays (PDG 2005 @ 90\%CL)} \\ & \text{BR}(\tau \to e \gamma) & < & 3.9 \cdot 10^{-7} \\ & \text{BR}(\tau \to \mu \gamma) & < & 6.8 \cdot 10^{-8} \\ & \text{BR}(\tau \to e^- e^+ e^-) & < & 2.0 \cdot 10^{-7} \\ & \text{BR}(\tau \to e^- \mu^+ \mu^-) & < & 2.0 \cdot 10^{-7} \\ & \text{BR}(\tau \to e^- \mu^+ \mu^-) & < & 1.3 \cdot 10^{-7} \\ & \text{BR}(\tau \to e^+ \mu^- \mu^-) & < & 1.9 \cdot 10^{-7} \\ & \text{BR}(\tau \to \mu^- e^+ e^-) & < & 1.1 \cdot 10^{-7} \\ & \text{BR}(\tau \to \mu^- \mu^+ \mu^-) & < & 1.9 \cdot 10^{-7} \\ & \text{BR}(\tau \to \mu^- \mu^+ \mu^-) & < & 1.9 \cdot 10^{-7} \\ \end{array}
```


Neutrino oscillations

- Kamiokande, SNO:
 ⇒ Neutrino oscillations
- Neutrino oscillations are violating lepton family number conservation
- Oscillation $\nu_{\mu} \rightarrow \nu_{\tau}$ is established

 \Rightarrow LFV in τ -decays is possible

Neutrino mixing matrix:

$$\begin{pmatrix} \nu_{\rm e} \\ \nu_{\mu} \\ \nu_{\tau} \end{pmatrix} = \begin{pmatrix} U_{\rm e1} & U_{\rm e2} & U_{\rm e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \cdot \begin{pmatrix} \nu_{1} \\ \nu_{2} \\ \nu_{3} \end{pmatrix}$$

like CKM matrix in the quark sector.

There are 3 contributing diagrams to each process.

Standard Model + Neutrino masses

GIM mechanism in the lepton sector

There is an almost complete cancelation of the amplitudes coming from the 3 contributing undistinguishable diagrams, due to the unitarity of the mixing matrix

Branching ratios in the SM

ullet The BR in the Standard Model are therefore rather small $(O(10^{-40}))$ and not measurable in current experiments

 \Rightarrow Observations of LFV tau decays will be an unambiguous sign of new physics.

Illustrative scenario:

$$T$$
 τ
 I_i

LFV in new physics:

- Beyond the SM a large number of theories give rise to LFV in the range of current experimental limits
- ullet Mass dependent couplings prefer au-LFV with respect to lighter leptons
- $au o I\gamma$ and au o III have different sensitivity to new physics

Some	predictions	in	BSM	models
------	-------------	----	------------	--------

	$\mid BR(\tau \to l\gamma)$	BR(au o III)
mSUGRA+seesaw (EPJC14(2000)319, PRD66(2002)115013)	10^{-7}	10-9
SUSY SO(10) (NPB649(2003)189, PRD68(2003)033012)	10^{-8}	10^{-10}
SUSY Higgs (PLB549(2002)159, PLB566(2003)217)	10^{-10}	10-7
Non-Universal Z' (PLB547(2002)252)	10^{-9}	10-8
SM+Heavy Majorana ν_R (PRD66(2002)034008)	10-9	10^{-10}
	'	

Swagato Banerjee (talk at the CERN flavour workshop (11/05))

⇒ LFV is an interesting option in search of new physics!

The CMS detector

Well suited for studying $\tau \rightarrow 3\mu$:

- vertexing
- large muon system

Luminosity goals:

2007: $1 \, \text{fb}^{-1} / \text{y}$ (initial operation) 2009: $10 - 30 \, \text{fb}^{-1} / \text{y}$ (low lumi)

2010: $100 - 300 \, \text{fb}^{-1}/\text{y}$ (high lumi)

2010: 100 - 300 fb ⁻¹/y (high lumi)

CMS

LFV in τ -decays at CMS

Possible decay channels@low lumi

- $\tau \to \mu \gamma$ (huge background)
- \bullet $\tau \rightarrow \mu \mu \mu$

At high lumi?

- More pile-up
- More stringent trigger

Other LFV τ -decays like $\tau \to e\gamma$, $\tau \to eee$, $\tau \to \mu ee$, $\tau \to \mu + {\rm hadrons}$ probably not detectable at CMS, but this needs to be studied.

au-sources at the LHC (Pythia)

decay channel	$N_{\tau}/_{y}$ (low lumi)
$W o au u_ au$	$1.7 \cdot 10^{8}$
$\gamma/Z o au au$	$3.2 \cdot 10^{7}$
$B^0 o au X$	$4.0\cdot 10^{11}$
$B^\pm o au X$	$3.8 \cdot 10^{11}$
$B_s o au X$	$7.9\cdot10^{10}$
$D_s o au X$	$1.5\cdot 10^{12}$

Trigger at CMS (L1)

- single muon $p_t > 14 \,\mathrm{GeV}$
- di-muon $p_t > 3 \,\mathrm{GeV}$

High Level Trigger (HLT)

- single muon $p_t > 19 GeV$
- di-muon $p_t > 7 \,\mathrm{GeV}$

 τ -Sources

$au o \mu \mu \mu \mu \; (W/Z\text{-Source})$

Older results:

CMS NOTE 2002/37 hep-ex/0210033

Expected limit:(W-Source)

- BR($\tau \to \mu \mu \mu$) = 7.0 · 10⁻⁸ $(10\,{\rm fb}^{-1})$
- BR($\tau \to \mu \mu \mu$) = 3.8 · 10⁻⁸ $(30 \, \text{fb}^{-1})$

Expected limit:(Z-Source)

• BR($\tau \to \mu \mu \mu$) = 3.4 · 10⁻⁷ $(30 \, \text{fb}^{-1})$

Prospects for analysis update:

- Now a more detailed detector and trigger simulation is available
- Rare decays to be studied with higher MC statistics

hep-ex/0210033

$au o \mu \mu \mu \; (W ext{-Source})$

CMS Trigger L1(HLT):

- single muon $p_t > 14 \,\mathrm{GeV} \,(19 \,\mathrm{GeV})$
- di-muon $p_t > 3 \,\mathrm{GeV} \,(7 \,\mathrm{GeV})$

- Only generator studies
- Toy MC: $\tau \to \mu \nu_{\mu} \nu_{\tau}$ and $(\nu \to \mu)$

$au o \mu\mu\mu$ (W-Source)

CMS Trigger L1(HLT):

- single muon $p_t > 14 \,\mathrm{GeV} \, (19 \,\mathrm{GeV})$
- di-muon $p_t > 3 \,\mathrm{GeV} \,(7 \,\mathrm{GeV})$

- Only generator studies
- Toy MC: $\tau \to \mu \nu_{\mu} \nu_{\tau}$ and $(\nu \to \mu)$

$au o \mu \mu \mu \ (D_s$ -Source)

CMS Trigger L1(HLT):

- single muon $p_t > 14 \,\mathrm{GeV} \left(19 \,\mathrm{GeV} \right)$
- di-muon $p_t > 3 \,\mathrm{GeV} \,(7 \,\mathrm{GeV})$

Signal studies so far:

• Toy MC: $au o \mu
u_{\mu}
u_{ au}$ and $(
u o \mu)$

Background:

$$D_s \to \mu \nu \phi$$

$$\phi \to \mu \mu, \mu \mu \gamma$$

- $\phi \to \mu\mu$: Reducible by invariant mass cut
- $\phi \to \mu \mu \gamma$: Although BR is only 10^{-5} this is a dangerous BG (irreducible?)

The work has just begun!

$au o \mu \mu \mu \; (D_s$ -Source)

CMS Trigger L1(HLT):

- single muon $p_t > 14 \,\mathrm{GeV} \left(19 \,\mathrm{GeV} \right)$
- di-muon $p_t > 3 \,\mathrm{GeV} \,(7 \,\mathrm{GeV})$

Signal studies so far:

• Toy MC: $\tau \to \mu \nu_{\mu} \nu_{\tau}$ and $(\nu \to \mu)$

Background:

$$D_s \to \mu \nu \phi$$

$$\phi \to \mu \mu, \mu \mu \gamma$$

- $\phi \to \mu\mu$: Reducible by invariant mass cut
- $\phi \to \mu \mu \gamma$: Although BR is only 10^{-5} this is a dangerous BG (irreducible?)

The work has just begun!

$au o \mu\mu\mu$ (*B*-Sources)

CMS Trigger L1(HLT):

- single muon $p_t > 14 \,\mathrm{GeV} \left(19 \,\mathrm{GeV} \right)$
- di-muon $p_t > 3 \,\mathrm{GeV} \,(7 \,\mathrm{GeV})$

- Only generator studies
- Toy MC: $\tau \to \mu \nu_{\mu} \nu_{\tau}$ and $(\nu \to \mu)$

$au o \mu\mu\mu$ (*B*-Sources)

CMS Trigger L1(HLT):

- single muon $p_t > 14 \,\mathrm{GeV} \, (19 \,\mathrm{GeV})$
- di-muon $p_t > 3 \,\mathrm{GeV} \,(7 \,\mathrm{GeV})$

- Only generator studies
- Toy MC: $\tau \to \mu \nu_{\mu} \nu_{\tau}$ and $(\nu \to \mu)$

$au o \mu\mu\mu$ (*Z*-Source)

CMS Trigger L1(HLT):

- single muon $p_t > 14 \,\mathrm{GeV} \left(19 \,\mathrm{GeV} \right)$
- di-muon $p_t > 3 \,\mathrm{GeV} \,(7 \,\mathrm{GeV})$

- Only generator studies
- Toy MC: $\tau \to \mu \nu_{\mu} \nu_{\tau}$ and $(\nu \to \mu)$

$au o \mu\mu\mu$ (*Z*-Source)

CMS Trigger L1(HLT):

- single muon $p_t > 14 \,\mathrm{GeV} \left(19 \,\mathrm{GeV} \right)$
- di-muon $p_t > 3 \,\mathrm{GeV} \,(7 \,\mathrm{GeV})$

- Only generator studies
- Toy MC: $\tau \to \mu \nu_{\mu} \nu_{\tau}$ and $(\nu \to \mu)$

Problems & Plans

Trigger

<u>L1:</u>

- Completely based upon hardware
- Difficult to impossible to change trigger setup
- No major improvements possible

HLT:

- Based upon software
- Contains a veto on a third track inside a small cone around $\mu_1\mu_2$
- Perhaps a modification of trigger thresholds/veto is possible
- An invariant mass cut to reduce raising backgrounds might be applicable

$\phi ightarrow \mu \mu \gamma$ -Background

- Maybe reducible by a cut applied to the angular distribution
- Therefore the correct angular distribution for signal (model dep.) and BG in MC is needed (Matrix elements to be implemented in Pythia?)

Other rare decays

• Other rare BGs (η, η') have to be studied as well

Muon ID

- ullet Muon ID efficiency for low p_t muons can become an issue
- This might be solved by an alternative muon ID algorithm based upon tracker+ECAL

$au ightarrow 3\mu$ vertex fit

• Study the improvements of a $au o 3\mu$ vertex fit

- ullet Copiuos au-production at LHC already at low lumi phase
- Main source for τ 's is $D_s \to \tau X$, but also via B, W, Z
- Dangerous $D_s \to \mu \nu \phi$, $\phi \to \mu \mu \gamma$ background
- Current CMS trigger thresholds will suppress most of the signal coming from the D_s source, some improvements possible
- Muon ID efficiency for low p_t muons to be improved

- Study (and correction) of signals(?) and $D_s \to \mu\nu\phi(\to\mu\mu\gamma)$ backgrounds angular distribution.
- Other BG rare decays with η , η' have to be studied
- Proposal for additional high level triggers to CMS
- Improvements for muon ID e.g. using tracker and ECAL
- Determination of the expected exclusion limit in the $\tau \to \mu \mu \mu$ channel
- \bullet Study the improvements of a $\tau \to 3 \mu$ vertex fit
- Extend LFV studies by $Z \rightarrow \mu \tau$ (diploma thesis)
- Compatitive with B-factories, Super-B?

