



### Flavour Physics at LHCb

Michael Schmelling – MPI for Nuclear Physics

e-Mail: Michael.Schmelling@mpi-hd.mpg.de

### Overview

- Introduction
- CP-Violation Measurements
- B-Physics with LHCb
- Selected Decay Channels
- Summary

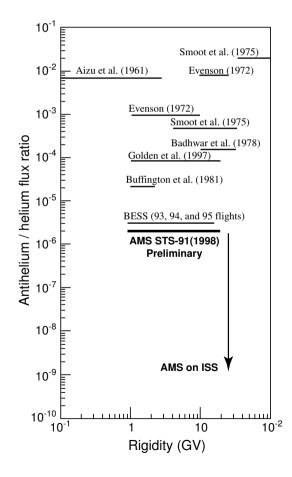


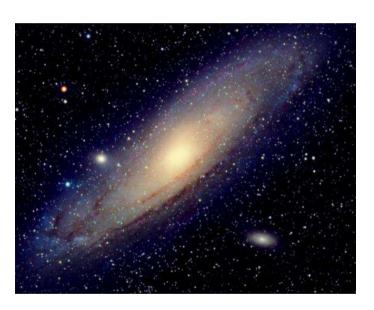
### 1. INTRODUCTION

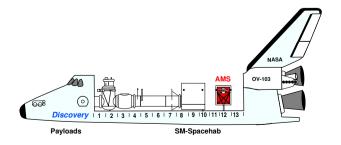


### Why B-Physics ? – or – Where is all the Anti-Matter?

naive expectation: equal amounts of matter and anti-matter from the Big Bang, but...


- $\blacksquare$  for example, no annihilation radiation seen in  $\gamma$ -rays from space,
- or search primordial He so far without positive results...


#### look for:


- → cosmic ray He
- → go into space
- → AMS experiment

### Result:

no He found







### Zakharov's Conditions



The necessary conditions to explain the matter dominance of the universe are:

- 1. C- and CP-violation
- 2. baryon-number violation
- 3. thermal non-equilibrium

#### Standard Model:

- C- and CP-violation exist in CKM-sector
- baryon-number violation via Spalerons and thermal non-equilibrium can be created in a 1st order phase transition during the early universe

#### Problem:

- SM-Higgs particle is too heavy to generate the 1st order phase transition and the CP-violation in the CKM-sector is too small to explain the matter dominance of the universe
  - extra sources of CP violation are needed
  - → "New Physics" expected in CP-violation measurements

### 2. CP-VIOLATION MEASUREMENTS



CP-Asymmetry  $A_{CP}$  for decays into a final state y:

$$\frac{A_{CP}}{\Gamma(X \to y) - \Gamma(\overline{X} \to \overline{y})} \qquad \text{with partial widths} \qquad \Gamma(\cdot) = |a(\cdot)|^2$$

Consider mixing induced CP-violation in decays to a CP-eigenstate  $y = y_{CP}$ :

$$a(X \to y_{CP}) = a_m(X \to X) \cdot a_d(X \to y_{CP}) + a_m(X \to \overline{X}) \cdot a_d(\overline{X} \to y_{CP})$$

$$a(\overline{X} \to y_{CP}) = a_m(\overline{X} \to \overline{X}) \cdot a_d(\overline{X} \to y_{CP}) + a_m(\overline{X} \to X) \cdot a_d(X \to y_{CP})$$

The contributing amplitudes are:

$$\begin{vmatrix} a_d(X \to y_{CP}) \\ a_d(\overline{X} \to y_{CP}) \end{vmatrix} = A e^{\pm i\omega} \quad a_m(X \to X) \\ a_m(\overline{X} \to \overline{X}) \end{vmatrix} = \cos \frac{\Delta mt}{2} \quad a_m(X \to \overline{X}) \\ a_m(\overline{X} \to X) \end{vmatrix} = i \sin \frac{\Delta mt}{2} e^{\pm i\phi}$$

with phase factors

 $\blacksquare$  phase from the decay:  $\omega$ 



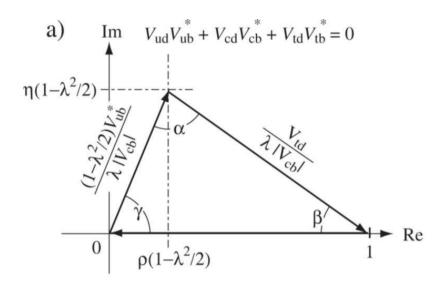
 $\blacksquare$  mixing phase:  $\phi$ 

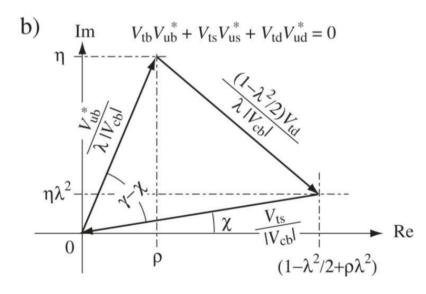


# CKM Matrix and Unitarity Triangles



### Standard Model: All phases arise from CKM Matrix elements


$$\begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \approx$$


$$\begin{pmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix}$$

Wolfenstein-parametrization



- $\blacksquare$  qualitative picture determined by  $\lambda \approx 0.22$
- $\blacksquare$  unitarity triangles  $C_1 \cdot C_3^{\star} = R_3 \cdot R_1^{\star} = 0$ 
  - $\rightarrow \arg(V_{td}) = -\beta \, (B_d \text{-mixing})$
  - $\rightarrow \arg(V_{ub}) = -\gamma \ (B_d \rightarrow \pi^+\pi^- \text{ decays})$
  - $\rightarrow \arg(V_{ts}) = \chi + \pi \approx \eta \lambda^2 + \pi \ (B_s\text{-mixing})$





note:  $V \neq 1$  goes beyond Higgs search in addressing the origin of mass!



### Phenomenology of B-decay Channels



$$B \to \pi\pi \text{ (isospin)}, \ B \to \rho\pi, \ B \to \rho\rho$$

$$R_b \ (b \to u, c\ell\bar{\nu}_\ell)$$

$$R_t \ (B_q^0 - \bar{B}_q^0 \text{ mixing})$$

$$B_d \to \pi^+\pi^-$$

$$B_s \to K^+K^-$$

$$B_d \to \psi K_S \ (B_s \to \psi \phi: \phi_s \approx 0)$$

$$B_d^{\pm} \to K^{\pm}D$$

$$B_d \to K^{\pm}D$$

$$B_d \to K^{\pm}D$$

$$B_d \to \psi K_S \ (\text{pure penguin})$$

from R. Fleischer hep-ph/0505018v1



## Search for New Physics in B-Decays



- compare measurements which are insensitive to new physics with measurements of the same quantity from a decay channel that is sensitive to new physics
  - $\Rightarrow \beta$  from  $B_d \to J/\psi \ K_s$  tree level dominates
  - igoplus eta from  $B_d o \phi K_s$  pure penguin
  - $ightharpoonup \gamma$  from  $B_s \to D_s K$  tree level dominates
  - $ightharpoonup \gamma$  from  $B_d \to \pi K$  with penguin contribution
- study observables which have a small expectation value in the standard model
  - ightharpoonup CP-asymmetry in  $B_s \to J/\psi \ \phi$
  - → transitions sensitive to FCNC, for example

$$m{\times}\ B o K^\star \gamma \ {
m i.e.}\ b o s \gamma$$

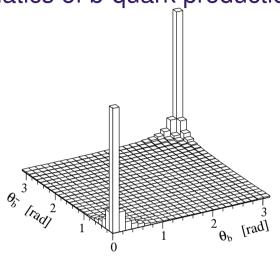
$$B_d \to K^{0*} \mu^+ \mu^-$$

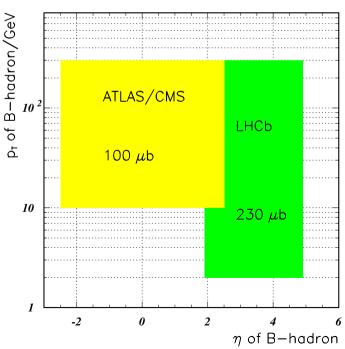
$$\mathbf{X}$$
 rare decays  $B_{d,s} \to \mu^+ \mu^-$ 

compare UT from length and angle measurements

#### Note:

The discussion here focuses on mixing induced CP-violation. In addition also direct CP-violation can be measured, with usually different sensititivity to New physics...


$$A_{CP}(t) \sim A_{dir} \cos(\Delta mt) + A_{mix} \sin(\Delta mt)$$




## 3. B-PHYSICS WITH LHCb



### Kinematics of b-quark production:

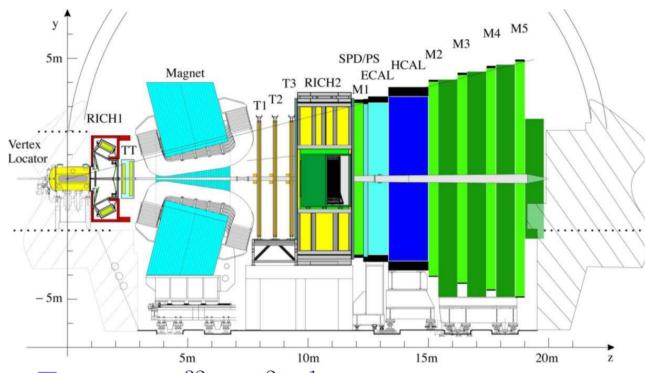




### Challenges to the detector:

### EFFICIENT TRIGGER FOR NON-LEPTONS

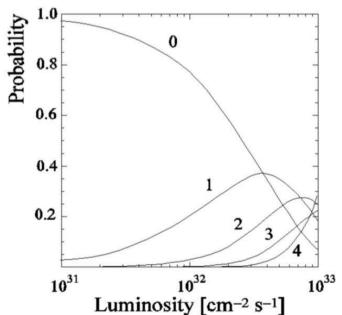
DISTINGUISH  $\pi/K$ 


| $B \to D^*\pi, D^*3\pi$ $B \to \rho\pi$                | $B \to DK^*  B \to K^* \gamma$                       | RESOLVE $x_s$                            |
|--------------------------------------------------------|------------------------------------------------------|------------------------------------------|
| $B_s \to D_s \pi$ $B_{d,s} \to D_{d,s}^+ D_{d,s}^-$    | $B_s \to KK$ $B_s \to D_s K$ $B_s \to K^{*+} K^{*-}$ | $B_s 	o J/\psi \phi$ $B_s 	o J/\psi K_s$ |
| $B \to \rho^+ \rho^-$ $B \to K^{*0} \overline{K}^{*0}$ | $B \to \pi\pi$ $B \to K\pi$                          |                                          |

$$B_d \to J/\psi K_s$$
  
 $B_d \to J/\psi \rho^0$   
 $B_{s,d} \to \mu^+ \mu^- \quad (\mathcal{O}(10^{-9})!)$ 

→ LHCb: optimized to meet these requirements

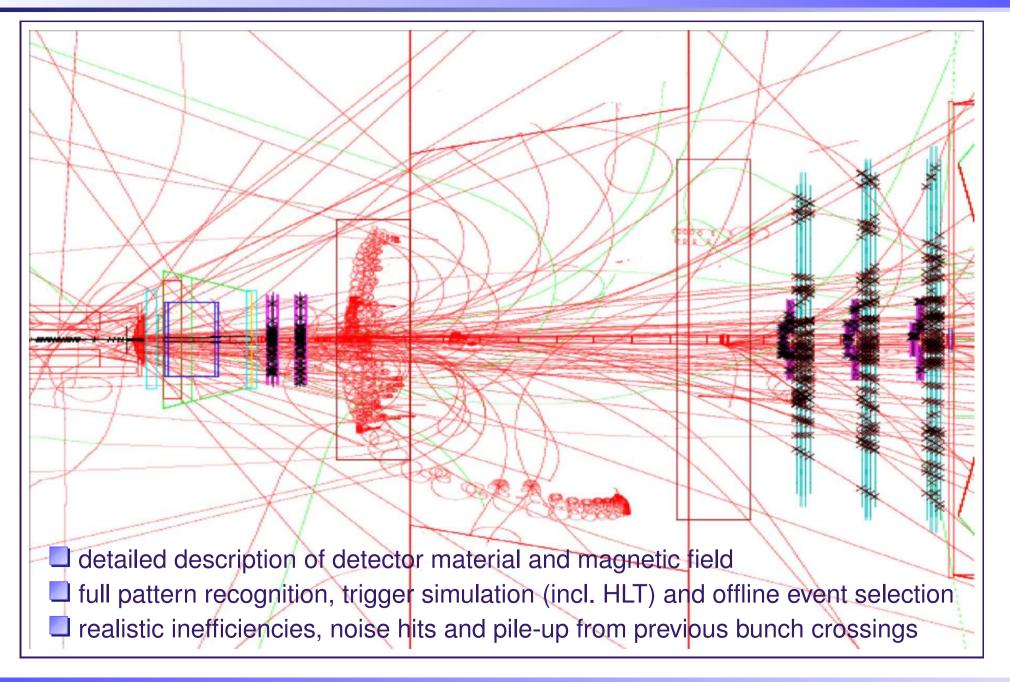
## The LHCb Experiment






- $\square \mathcal{L} = 2 \cdot 10^{32} \text{ cm}^{-2} \text{s}^{-1}$ , adjustable
- $ightharpoonup 10^5$  b-events/second,  $2 \cdot 10^{12}$  b-hadrons/year
- $\blacksquare B^0: B^{\pm}: B_s: \Lambda_b \approx 0.8: 0.8: 0.2: 0.2$
- lepton and hadron trigger
  - **★** 200 Hz exclusive B-candidates
  - **✗** 600 Hz high mass Di-muons
  - $\times$  300 Hz  $D^*$  candidates
  - $\times$  900 Hz inclusive *b*-trigger

- → forward spectrometer
- → excellent particle-ID
- → high vertex resolution
- → flexible trigger
  - X 1 MHz readout to HLT
  - × 2 kHz to disk


### pp interactions/BX



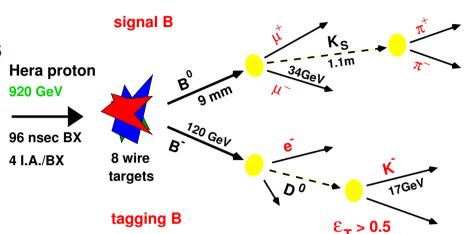


### LHCb Monte Carlo Simulation








- determination of the initial flavour of a B-meson
  - obvious for charged B-mesons
  - experimental challenge for neutral B-mesons
    - → opposite side tagging
      - x reconstruct flavour of "idler"-B
    - → same-side tagging
      - ★ self-tagging B\*\*-decays
      - **X** fragmentation products

note: effective fraction of perfect tags

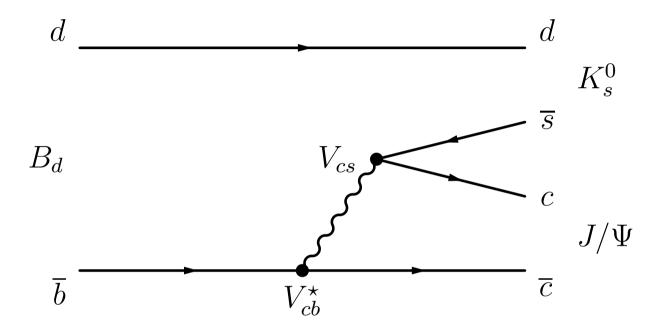
$$\varepsilon_{\tt eff} = \varepsilon_{\tt tag} (1 - 2w)^2$$

with

- $\rightarrow \varepsilon_{\text{tag}}$  tagging efficiency
- $\rightarrow w$  mistag fraction



### LHCb Flavour tagging performance:


| Channel                                                                  | $\varepsilon_{\mathrm{tag}}$ (%) | w (%)          | $\varepsilon_{\mathrm{eff}}$ (%) |
|--------------------------------------------------------------------------|----------------------------------|----------------|----------------------------------|
| $\mathrm{B}^0\!\to\pi^+\pi^-$                                            | $41.8 \pm 0.7$                   | $34.9 \pm 1.1$ | $3.8 \pm 0.5$                    |
| $\mathrm{B}^0 \! \to \mathrm{K}^+ \pi^-$                                 | $43.2 \pm 1.4$                   | $33.3 \pm 2.1$ | $4.8 \pm 1.0$                    |
| $\mathrm{B}^0 \! \to \mathrm{J}\!/\!\psi(\mu\mu)\mathrm{K}^0_\mathrm{S}$ | $45.1 \pm 1.3$                   | $36.7 \pm 1.9$ | $3.2 \pm 0.8$                    |
| $\mathrm{B}^0 \to \mathrm{J}/\psi(\mu\mu)\mathrm{K}^{*0}$                | $41.9 \pm 0.5$                   | $34.3 \pm 0.7$ | $4.1 \pm 0.3$                    |
| $\mathrm{B_s^0}\! \to \mathrm{K^+K^-}$                                   | $49.8 \pm 0.5$                   | $33.0 \pm 0.8$ | $5.8 \pm 0.5$                    |
| $\mathrm{B_s^0}\!\to\pi^+\mathrm{K}^-$                                   | $49.5 \pm 1.8$                   | $30.4 \pm 2.6$ | $7.6 \pm 1.7$                    |
| $\mathrm{B_s^0}\!\to\mathrm{D_s^-}\pi^+$                                 | $54.6 \pm 1.2$                   | $30.0 \pm 1.6$ | $8.7 \pm 1.2$                    |
| $B_s^0 \to D_s^{\mp} K^{\pm}$                                            | $54.2 \pm 0.6$                   | $33.4 \pm 0.8$ | $6.0 \pm 0.5$                    |
| $B_s^0 \to J/\psi(\mu\mu)\phi$                                           | $50.4 \pm 0.3$                   | $33.4 \pm 0.4$ | $5.5 \pm 0.3$                    |

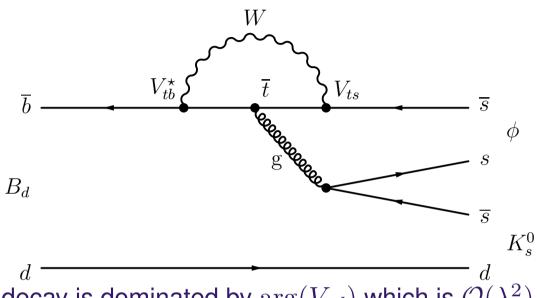


# 4. SELECTED DECAY CHANNELS



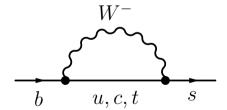
### The "golden Decay" $B_d \to J/\Psi K_s$

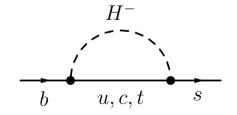


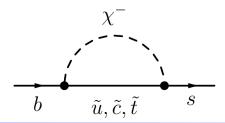

- → "classical" example for mixing induced CP-violation
- → in Wolfenstein-parametrization no phase from decay
- $\rightarrow$  in Standard-Model measures the  $B_d$ -mixing phase
- → dominated by tree level contributions
- → small or no New Physics contributions expected

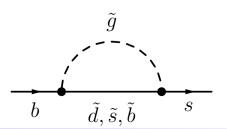
 $\rightarrow$  Measurement of  $\sin 2\beta$ 







### Standard Model: alternative way of measuring $\sin 2\beta$ in a pure penguin mode





the weak phase from decay is dominated by  $arg(V_{td})$  which is  $\mathcal{O}(\lambda^2)$ 

- possible contributions from new physics:
  - new heavy bosons with CKM-like couplings
  - new contributions to FCNC transitions
    - would show up elsewhere as well
    - constrained by other limits









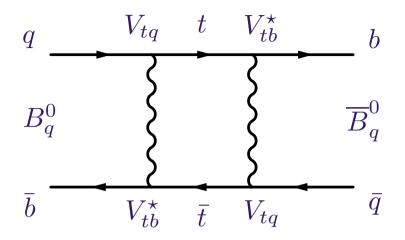
### Results from the B-Factories

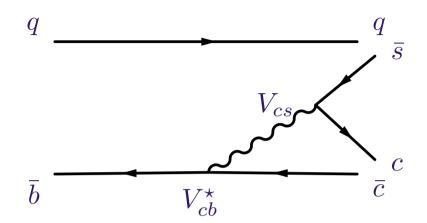


# $\sin(2\beta^{\text{eff}})/\sin(2\phi_1^{\text{eff}})$ HFAG



|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | _                                                 |                                                    |          | PRELIMINARY                         | 1   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|---------------------------------------------------|----------------------------------------------------|----------|-------------------------------------|-----|
| b→ccs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | World Aver            | age                                               |                                                    |          | $0.69 \pm 0.03$                     |     |
| F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | BaBar                 |                                                   | <del>5</del> 8                                     |          | $0.50 \pm 0.25 ^{+0.0}_{-0.0}$      | 4   |
| ٠<br>ک                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Belle                 |                                                   | <u> </u>                                           |          | $0.44 \pm 0.27 \pm 0.03$            | 5   |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Average               |                                                   | -\&                                                | - 1      | $0.47 \pm 0.19$                     |     |
| 9,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | BaBar                 |                                                   | <del>- 5</del>                                     | - 1      | $0.36 \pm 0.13 \pm 0.03$            |     |
| η΄ Κ <sup>0</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Belle                 |                                                   |                                                    |          | $0.62 \pm 0.12 \pm 0.04$            | 4   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Average               |                                                   |                                                    |          | $0.50 \pm 0.09$                     |     |
| ₹ <sub>o</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | BaBar                 |                                                   | Ċ                                                  |          | $-0.95^{+0.23}_{-0.32}\pm0.10$      |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Belle                 |                                                   |                                                    | <u> </u> | $0.47 \pm 0.36 \pm 0.08$            |     |
| ئ-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7 11 5 1 ag 5         | .1                                                |                                                    |          | $0.75 \pm 0.24$                     |     |
| × <sub>o</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | BaBar                 |                                                   | <b>5</b>                                           |          | $0.35^{+0.30}_{-0.33} \pm 0.04$     | 4   |
| <u>x</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Belle                 | -                                                 |                                                    |          | $0.22 \pm 0.47 \pm 0.08$            |     |
| ok s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Average               |                                                   |                                                    |          | $0.31 \pm 0.20$                     |     |
| β <sub>0</sub> μ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | BaBar <del></del>     | <del>                                      </del> |                                                    |          | $-0.84 \pm 0.71 \pm 0.08$           | - 1 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Averag <mark>e</mark> | * 5                                               |                                                    |          | $-0.84 \pm 0.7$                     |     |
| ω K <sub>S</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | BaBar                 |                                                   |                                                    | ₹        | $0.51^{+0.35}_{-0.39} \pm 0.02$     | 2   |
| S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Belle                 |                                                   | <u>.</u>                                           |          | $0.95 \pm 0.53 ^{+0.1}_{-0.1}$      | - 1 |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Average               |                                                   | 3                                                  | <b></b>  | $0.64 \pm 0.30$                     |     |
| \( \( \delta \) \)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | BaBar                 | <u> </u>                                          | <b>7</b> 2                                         |          | $0.17 \pm 0.52 \pm 0.20$            | - 1 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Average               |                                                   | <del>**                                     </del> |          | $0.17 \pm 0.58$                     | - 1 |
| \Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | BaBar                 | :                                                 |                                                    |          | $\pm 0.18 \pm 0.07 \pm 0.1$         |     |
| <b>×</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Belle                 |                                                   |                                                    | • 0 6    | $0 \pm 0.18 \pm 0.04^{+0.1}_{-0.1}$ | 2   |
| <u>+</u> φ.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Average               |                                                   |                                                    | ;<br>    | $0.51 \pm 0.14^{+0.1}_{-0.0}$       |     |
| \ \times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\tim | BaBar                 |                                                   | 15                                                 | †        | $0.63^{+0.28}_{-0.32} \pm 0.04$     |     |
| \ \Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Belle                 |                                                   | 1                                                  | <b>-</b> | $0.58 \pm 0.36 \pm 0.08$            |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Average               | 1                                                 |                                                    | Li       | $0.61 \pm 0.23$                     | 3   |
| -3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -2                    | -1                                                | 0                                                  | 1        | 2                                   | 3   |


- n=16 measurements
- $\blacksquare$  14 below  $b \rightarrow c\bar{c}s$
- consider the probability that from n measurements which fluctuate symmetrically around the  $b \to c\bar{c}s$ average, at most M=2 are above:


$$p = 2^{-n} \sum_{k=0}^{M} \binom{n}{k} \approx 0.0021$$

→ 3-sigma effect . . . stay tuned!

## The Decay $B_s \to J/\psi \ \phi$







- $lue{}$  similar to the "golden decay"  $B_d o J/\psi \; K_s$  with d o s
- theoretically clean measurement, only very small penguin contribution
- $\blacksquare$  only small CP-asymmetry expected in SM:  $\phi_s = -\arg V_{ts}^2 pprox -2\eta\lambda^2 pprox -0.04$
- sensitive probe to NP, e.g.
  - $\rightarrow$  gluinos and squarks in box diagram:  $\sin \phi_s \sim 1$  (Ball et al., hep-ph/0311361)
  - $\rightarrow$  up-type quark singlets:  $\sin \phi_s \sim \lambda$  (Aguilar-Saavedra et al., hep-ph/0406151)
- mix of different CP eigenstates because two CP-odd vector mesons in final state
  - → CP-even states from scalar 0 and longitudinal || polarization
  - → CP-odd states from transverse ⊥ polarization
- study also final states which are CP-eigenstates, e.g.
  - $\rightarrow B_s \rightarrow J/\psi \, \eta, B_s \rightarrow \eta_c \phi, \dots$

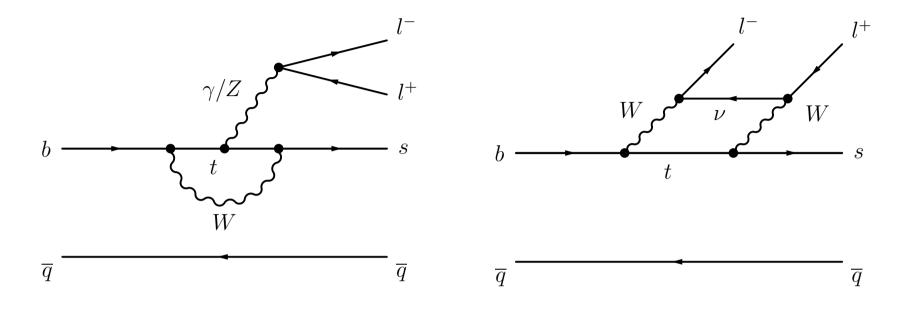


# LHCb Sensitivity for $\phi_s$ with 2 fb<sup>-1</sup>



dealing with different CP-Eigenstates

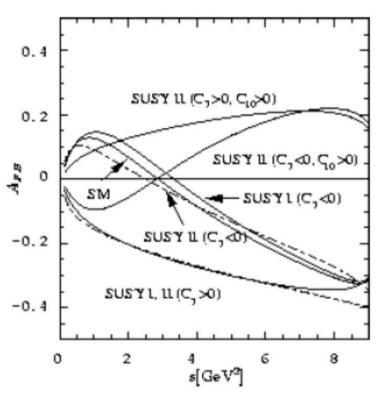
- standard measurement for CP-Eigenstates
- lacksquare analysis for  $B_s o J/\Psi \phi$

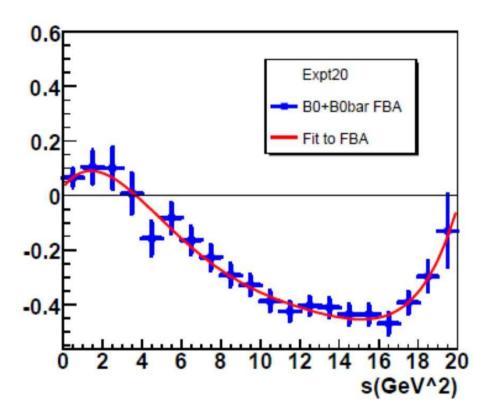

$$\frac{d\Gamma}{d\cos\Theta_{tr}} \propto \left[ |A_0|^2 + |A_{||}|^2 \right] \frac{3}{8} (1 + \cos^2\Theta_{tr}) + |A_{\perp}|^2 \frac{3}{4} \sin^2\Theta_{tr}$$

→ Results (L. Fernandez/J. van Hunen)

| Channel                                 | CP-Eigenstate | $\sigma(\phi_s)$ [rad] |
|-----------------------------------------|---------------|------------------------|
| $B_s \to J/\Psi \phi$                   | mixed         | 0.023                  |
| $B_s \to D_s D_s$                       | even          | 0.133                  |
| $B_s \to J/\Psi \eta (\pi^+\pi^-\pi^0)$ | even          | 0.129                  |
| $B_s \to J/\Psi \eta(\gamma\gamma)$     | even          | 0.108                  |
| $B_s \to \eta_v \phi$                   | even          | 0.108                  |
| combined                                |               | 0.021                  |

# The Decay $B_d o X \mu^+ \mu^-$




- many possible New Physics contributions
  - ightharpoonup in  $bs\gamma$ -vertex, which contributes also to  $B \to K^*\gamma$  with  $A_{CP}^{SM} \leq 0.01$
  - → extra Z-bosons
  - → new particles in box diagrams
- theoretically rather clean prediction for inclusive processes and ratios
- still good accuracy for experimentally accessible exclusive final states
  - $\rightarrow B_d \rightarrow X \mu^+ \mu^- \text{ with } X = K^*, \rho, \phi$ 
    - → study FB-asymmetry of the muons w.r.t. their common momentum . . .

# SM vs SUSY Predictions for $B_d \to K^* \mu^+ \mu^-$







- forward-backward asymmetry
  - $\rightarrow$  SM predicts zero around  $s=3~{\rm Gev}^2$
  - → very small hadronic uncertainties
  - → supersymmetry naturally expects no change of sign

- LHCb sensitivity after 5 nominal years
  - → 22k events
  - $\rightarrow$  zero point  $s_0 = 4.0 \pm 0.5 \text{ GeV}^2$
  - ightharpoonup constraint on  $C_7^{\rm eff}$

note: only continuum is shown – contributions from  $J/\Psi$ ,  $\Psi'$  etc. are suppressed



### 5. SUMMARY



- B-Physics at LHC is a excellent place to look for new physics
  - → many ways to look for New Physics by overconstraining the SM
    - **✗** SM (tree level) dominated measurements
    - **X** penguin dominated processes
    - ✗ box diagram dominated decays
  - → comparison of results will reveal New Physics
  - $\rightarrow$  sensitivity to new particles in quantum corrections up  $\mathcal{O}(\text{TeV})$
- LHCb is optimized to exploit the B-Physics potential of LHC
  - → dedicated to study of B-physics and rare decays
  - → full physics potential from day-1 of LHC
  - → precision measurements of couplings
  - → "worst case" will be precision measurements of CKM matrix
    - ✗ historical precedent: Tycho Brahe . . .
- potential for charm physics not yet explored
- thinking has already started towards upgrades . . .

# LHCb Sensitivities for 2 fb<sup>-1</sup>



|                | Channel                                | Yield* | B <sub>bb</sub> /S | Precision                                                                   |
|----------------|----------------------------------------|--------|--------------------|-----------------------------------------------------------------------------|
| γ              | B <sub>s</sub> → D <sub>s</sub> K      | 5.4k   | <1                 | σ(γ) ≈ 14°                                                                  |
|                | $B_d \rightarrow \pi\pi$               | 26k    | < 0.7              |                                                                             |
|                | $B_s \rightarrow KK$                   | 37k    | 0.3                | σ(γ) ≈ 6°                                                                   |
|                | $B_d \rightarrow D^0(K^-\pi^+)K^{*0}$  | 0.5k   | < 0.3              |                                                                             |
|                | $B_d \rightarrow D^0(K^+\pi^-)K^{*0}$  | 2.4k   | <2                 | σ(γ) ≈ 8°                                                                   |
|                | $B_d \rightarrow D_{CP}(K^+K^-)K^{*0}$ | 0.6k   | <0.3               |                                                                             |
|                | $B^- \rightarrow D^0(K^-\pi^+)K^-$     | 60k    | 0.5                |                                                                             |
|                | $B^- \rightarrow D^0(K^+\pi^-)K^-$     | 2k     | 0.5                | σ(γ) ≈ 5°                                                                   |
| α              | $B_d \rightarrow \pi^0 \pi^- \pi^+$    | 14k    | 0.8                | σ(α) ≈ 10°                                                                  |
| φ <sub>s</sub> | B <sub>s</sub> → J/ΨΦ                  | 125k   | 0.3                |                                                                             |
|                | $B_s \rightarrow J/\Psi \eta$          | 12k    | 2-3                | $\sigma(\phi_s) \approx 2^{\circ}$                                          |
|                | $B_s \rightarrow \eta_c \Phi$          | 3k     | 0.7                |                                                                             |
| Δms            | $B_s \rightarrow D_s \pi$              | 80k    | 0.3                | ∆m₅ up to 68 ps <sup>-1</sup>                                               |
| β              | $B_d \rightarrow J/\Psi K_S$           | 216k   | 0.8                | σ(sin2β) ≈ 0.022                                                            |
| rare           | $B_d \rightarrow K^* \mu^+ \mu^-$      | 4.4k   | <2.6               | C <sub>7</sub> <sup>eff</sup> /C <sub>9</sub> <sup>eff</sup> with 13% error |
| decays         | $B_s \rightarrow \mu^+\mu^-$           | 17     | <5.7               | NP search                                                                   |
|                | $B_d \rightarrow K^*\gamma$            | 35k    | <0.7               | σ(A <sub>CP</sub> dir) ≈ 0.01                                               |