Basics of VHDL

Christian Schroder

Institut fur Physik
Johannes-Gutenberg-Universitat Mainz

6th Detector Workshop of the Helmholtz Alliance

“Physics at the Terascale”
Mainz, 26/02/2013

PHYSICS
AT THE

Helmholtz Alliance




Hardware Description Languages (HDLs)

Describe, model and simulate the operation of complex digital circuits

Modelling ranges from switch-level to processor-level (e.g. Pentium,
ARM?7)

In contrast to general purpose languages, HDLs provide:
» synthesizable subset
®» structure & instantiation
®» timing, hardware concurrency & parallel activity flow
Verilog & VHDL
®» most-widely used and well-supported HDLs
®» industry standards
SystemC & SystemVerilog
» system-level design & verification
» increased popularity
Other HDLs represent only a small piece on the total HDL market

7 s 26.02.2013 Helmholtz Alliance, 6th Detector Workshop, Mainz - Christian Schrader



Why VHDL and not: Verilog in this Course ?

B Both Verilog and VHDL are powerful languages
B Verilog
®» “Loosely-typed" language - faster to write
» Less popular among the participants
® VHDL
®» "Strongly-typed” language - easier to debug
®» Very-high-speed integrated circuit Hardware Description Language
®» General purpose parallel programming language (not only electronics)

®» More popular among the participants VHDL
. . library ieee;
Verilo Schematic use ieee.std logic_1164.all;
module gates(A,B,R,Q); entity gates is
input A,B; Q——}E—D port( A,B: in std logic;
output Q,R; B Q,R: out std logic);
= end;
assign Q = A & B;
assign R = A | B; architecture implement of gates is
AND begin
endmodule §> Q <= A and B;

R <= A or B;

o i
% 26.02.2013 Helmholtz Alliance, 6th Detector Workshop, Mainz*=—€hristian-Schroder 3



VHDL - General remarks

B VHDL is not case sensitive, but it is strongly recommended to be
consistent in using upper/lower case writing

®» as in every programming language one should apply coding rules and
stick to them

E Reserved words (in this talk set in blue) must not be used as names
(signals, variables, ...)

B Identifiers (names for variables, signals, labels, entities, ..) must be
unique within the scope of the namespace (within an entity-architecture

block)
B VHDL supports both behavioral and structural (and mixed) design
» there are different ways of how to implement the same design

B VHDL supports statements and expressions that cannot be synthesized
and may be for simulation only (e.g. delay times, ...)

SSSSSSS

7 s 26.02.2013 Helmholtz Alliance, 6th Detector Workshop, Mainz - Christian Schrader 4

SSSSS
{l tz Alliance



Object and data types

B VHDL knows several object types like signal (represents a wire),
variable and constant > define types of objects
B Data types define types of values of these objects
B Basic data types are scalars like:
®» integer, signed, unsigned, boolean
» std logic - standard data type for electronic designs with 9
different states (some are only relevant for simulation)
@ '0', '1'- logic levels type bit is ('0’, ‘1%);
@'U, X, W -uninitialized, type byte is array(7 downto 0) of bit;

unknown. weak unknown type bus is array(0 to 7) of std logic;

@ 'Z', 'L’, 'H - high impedance,
weak O, weak 1

-— or (btw. this is a comment):
type bus is std logic_vector (0 to 7);

type myrec is record(A: bit; B: byte)
@ '-' - don't care (for synthesis) | ena record myrec;

B Composite data types are
collections of scalar type

» arrays (e.g. for buses)
» records (similar to C)

constant MAXVAL: integer := 127;
signal mybus: std logic_vector (7 downto 0);

variable counter: integer range 0 to 127;

% 26.02.2013 Helmholtz Alliance, 6th Detector Workshop, Mainz - Christian Schrader 5

Helmholtz Alliance



Libraries and types

B Libraries (1ibrary) are used to aggregate and provide objects and types for
re-usage

B Commonly used are some IEEE libraries:

» ieee.std logic 1164 -> provides standard types for signals:
std logic and std logic vector

» ieee.std logic arith - provides basic arithemtic, conversion, and
comparison functions for signed, unsigned, integer and std logic

» ieee.std logic unsigned -> provides signed/unsigned arithmetic
and conversion for std logic vector

library ieee;

use ieee.std logic_1164.all;

use ieee.std logic arith.all;
use ieee.std logic_unsigned.all;

Example:

signal A,B: std logic_vector (7 downto 0);

if A -1 > ‘0’ then
B<=A- ‘1";

PHYSICS else
% 26.02.2013 Helmholtz Alliance, 6th Detector Workshop, Mainz - Christian Schrader 6

llllllllllllllll



Entity - Basic building blocks in VHDL

B Basic building block of a VHDL model is the entity
B Entity declaration consist of

Entity template

» Name Of entity entity NAME is

» Interface specification generic (LIST) ;

. . . . B S ;
® Config. Parameter definitions: generic port (LIST)
end entity NAME;

® I/0 port definitions: port (in, out or inout)

B Describes only the outside view of a hardware module (implementation
independent)

Example: AND (2 Is, 10)

entity AND is

generic (timeprop: delay length);

A
& oH— ‘ port(A,B: in std logic;
B

O : out std _logigq);

end entity AND;

% 26.02.2013 Helmholtz Alliance, 6th Detector Workshop, Mainz - Christian Schrader



Architecture - Filling the inside

B An architecture describes how an Entity template
enTlTy operaTeS inSide architecture NAME of ENTITYNAME is
E Multiple architectures for one entity are | -- local declarations
possible begin
. -- statements
®» alternatives can be declared end architecture NAME:

E Description style can be structural,
behavioral or mixed
» Hierarchical/top-down design is
possible

Example: AND (2 I, 1 O)

architecture and behav of and is

begin

A
g o ‘ O <= ‘1’ when A='1l’ and B='l’ else
B \0/;

end architecture and behav;

% 26.02.2013 Helmholtz Alliance, 6th Detector Workshop, Mainz - Christian Schrader 8

llllllllllllllll



Components - Using design entities

B To allow for hierarchical designs entities can be used as components within

other entities through:

®» Declaration (component) - has to match exactly the entity definition

®» Instantiation with unique name and specification of port connectivity via
the port map - ordering (and type) has to match the component!

declaration!

Example: NAND composed of AND

-- and declaration of previous slides

entity and is
port(A,B: in std logic;
O : out std:logig);
end entity AND;

architecture and;behav of and is

begin
O <= ‘1’ when A='‘1l’ and B='l’
\OI 2
end architecture and_behav;

% 26.02.2013 Helmholtz Alliance, 6th Detector Workshop, Mainz - Christian Schraoder

Helmholtz Alliance

entity nand is
port(A,A2: in std logic;
o) : out std _logigq);
end entity nand;

architecture nand behav of nand is

component and is
port(A,B: in std logic;
O : out std _logigq);
end component and;

signal AO: std logic;

begin
intandl: and port map(A,A2,AOQ);
O <= not AO;

end architecture nand behav;



Port map - alternate way

B The port map ordering has to match the componet

OR:

B The signals/ports have to be connected explicitly by names

architecture nand behav of nand is

component and is
port(A,B: in std logic;
O : out std:logig);
end component and;

signal AO: std logic;
begin -
intandl: and port map(A,A2,A0Q);

O <= not AO; \ B

end architecture nand behav;

architecture nand behav of nand is

component and is
port(A,B: in std_logic;
O : out std logigq);
end component and;

signal AO: std logic;
begin
intandl: and port map (
A => A4,
B => A2,
O => AOQ);
O <= not AO;
end architecture nand behav;

% 26.02.2013 Helmholtz Alliance, 6th Detector Workshop, Mainz - Christian Schrader 10

Helmholtz Alliance



Concurrent statements

B Concurrent statements

®» Signal assignment » A <= B xor C;
®» Conditional signhal assignments =————5 a2 <= B when C else D:
» Selected signal assignments  ——__ | .., &us

select

®E Whenever one of the dependent signals O <= A when x"01”,
B when x”0F”,

changes the assignment is updated C when others;
®» continuous assignment
B All statements are updated concurrently/in parallel

A <= B xor C;
B <= C or not D;

’/’/’//),.A <= C nor B;

Important:
®» Signals must not be driven by more than one other signal

% 26.02.2013 Helmholtz Alliance, 6th Detector Workshop, Mainz - Christian Schrader 11

llllllllllllllll



Processes

B Processes themselves are executed concurrently

B Processes are usually triggered by one or more signals
- defined by the sensitivity list

B Statements inside processes are executed sequentially
®» signals hold the last assigned value at the end of the process
B Inside processes variables can be used
B If-else-, case-when- and for-loop-statements can be used inside
B Usually used as clocked processes for pipelined designs

Entity template

[processlabel:] process architecture [(sensitivity-list)] [is]
-- local declarations
begin

-—- statements

end process [process-label];

% 26.02.2013 Helmholtz Alliance, 6th Detector Workshop, Mainz - Christian Schrader 12

llllllllllllllll



Example: clocked flip-flop with reset

E D-Flipflop with async. reset B D-Flipflop with sync. reset

DFF : process (CLK)
DFF : process (RST, CLK)
begin
begin
if rising edge (CLK) then
if RST = 'l' then -
if RST = 'l' then

Q<= "'0";
Q<= "'0";
elsif rising edge (CLK) then
else
Q <= D;
Q <= D;
end if;
end if;

end process DFF;
end process DFF;

B Also CLK’event and CLK = ‘1’ instead of rising edge (CLK) is
common syntax

B Of course, also falling edge () can be used for processes on the falling
edge (or: CLK’ event and CLK = ‘0')

% 26.02.2013 Helmholtz Alliance, 6th Detector Workshop, Mainz - Christian Schrader 13

llllllllllllllll



Signals vs. variables

B Signals represent physical wires

"

'Y
.
.

\ 4

-

assignment via "<="
allow communication between processes and components
concurrently connect different design units

update is scheduled with an associated delay (at least a delta delay)
within processes

can exist inside and outside of processes
can only be driven by one process at a time

B Variables can be seen as placeholder for the assigned value

°
N
"y
-

SSSSSSS

llllllllllllllll

n

assignment via ":=
updated immediately (no delay)

only exist inside of processes

follow more the logic of non-HDL programming/easier to read(?)

7 s 26.02.2013 Helmholtz Alliance, 6th Detector Workshop, Mainz - Christian Schrader 14



Example: signals vs. variables

B Using signals: B Using variables:
entity EXAMPLE is entity EXAMPLE is
port( CLK: in std_logic; port( CLK: in std_logic;
RESULT: out integer) ; RESULT: out integer) ;
end entity EXAMPLE; end entity EXAMPLE;
architecture VAR of EXAMPLE is architecture VAR of EXAMPLE is
signal varl: integer :=1; begin
signal var2: integer :=2; process (CLK)
signal var3: integer :=3; variable varl: integer :=1;
begin variable var2: integer :=2;
process (CLK) variable var3: integer :=3;
begin begin
if rising_edge (CLK) then if rising_edge (CLK) then
varl <= var2; varl := var2;
var2 <= varl + var3; var2 := varl + var3;
var3 <= var2; var3 := var2;
RESULT <= varl + var2 + var3; RESULT <= varl + var2 + var3;
end process; end process;
end architecture VAR; end architecture VAR;

% 26.02.2013 Helmholtz Alliance, 6th Detector Workshop, Mainz - Christian Schrader 15

Helmholtz Alliance



Other useful details for the Exercises (1)

B if-else and case statements
» similar to those available in other high-level programming languages:

» only inside of processes, eq. for clocked processes
(clock should be in sensitivity list in case of clocked processes!)

S e

if conditional _expression then if rising_edge(clk) then
statement(s) out <= A xor B;

elsif conditional _expression if cnt > 0 then
statement(s) cnt <=cnt + 1;

else end if;
statement end if;

end if;

SSSSSSS

7 26.02.2013 Helmholtz Alliance, 6th Detector Workshop, Mainz - Christian Schrader 16

llllllllllllllll



Other useful details for the Exercises (2)

B Generate statement

®» Evaluated during the circuit

elabor‘aﬂon STeP architecture GEN of REG_BANK is
- similar to macros in C component REG
port(D,CLK,RESET : in std _logic;

®» used to repeat instantiation 0 : out std logic) ;

CO”STI"UCTS end component REG;

begin

» used to create conditional GEN_REG:

inSTGnTiGTiOHS for I in 0 to 3 generate

REGX : REG port map

®» index in the "for” construct has (DIN(I), CLK, RESET, DOUT(I)):

. end generate GEN REG;
local scope and can be used to pick -

specific signals from an array in
portmap statements.

end architecture GEN;

% 26.02.2013 Helmholtz Alliance, 6th Detector Workshop, Mainz - Christian Schrader 17

llllllllllllllll



Other useful details for the Exercises (3)

® Numbers
» Scalar constant: ‘0’ , ‘1’
» Array constant: “0010”, “0100”,..
®» hexdec. values: x”700”, x”3F”, ..

E Arrays

®» concatenation:
A <=B & C;

B<= ‘0" & ‘1’ & “107; -- 0110

» others:
A <= B”101” & (others => ‘0’); -- 1010 0000
B <= (others => ‘1’); -- 1111 1111

®» named, partial assignement:
A <= (3=>'1’, others=>'0"); -- 0000 1000

SSSSSSS

7 26.02.2013 Helmholtz Alliance, 6th Detector Workshop, Mainz - Christian Schrader

llllllllllllllll

18



Other useful details for the Exercises (4)

® Operators

®» similar to the operators of other programming languages

» Can be used in both continuous and procedural assignment

Arithmetic operators * [, +, -, mod, rem

Logical operators and, or, not, nand, nor, xor, xnor

Relational operators > <, >= <=

Equality =, /=

Bitwise operators and, or, nand, nor, xor, xnor

Shift Operator sll, srl (logical, i.e. fill with 0s)
sla, sra (arithmetic)

Concatenation &

SSSSSSS
AT

7 s 26.02.2013 Helmholtz Alliance, 6th Detector Workshop, Mainz - Christian Schrader 19

llllllllllllllll



