

!   Describe, model and simulate the operation of complex digital circuits
!   Modelling ranges from switch-level to processor-level (e.g. Pentium,

ARM7)
!   In contrast to general purpose languages, HDLs provide:

!   synthesizable subset
!   structure & instantiation
!   timing, hardware concurrency & parallel activity flow

!   Verilog & VHDL
!   most-widely used and well-supported HDLs
!   industry standards

!   SystemC & SystemVerilog
!   system-level design & verification
!   increased popularity

!   Other HDLs represent only a small piece on the total HDL market

26.02.2013 2

!   Both Verilog and VHDL are powerful languages
!   Verilog

!   “Loosely-typed” language  faster to write
!   Less popular among the participants

!   VHDL
!   “Strongly-typed” language  easier to debug
!   Very-high-speed integrated circuit Hardware Description Language
!   General purpose parallel programming language (not only electronics)
!   More popular among the participants

library ieee;
use ieee.std_logic_1164.all;

entity gates is
 port(A,B: in std_logic;
 Q,R: out std_logic);
end;

architecture implement of gates is
begin
 Q <= A and B;
 R <= A or B;
end;

VHDL

Verilog Schematic

26.02.2013 3

!   VHDL is not case sensitive, but it is strongly recommended to be
consistent in using upper/lower case writing
!   as in every programming language one should apply coding rules and

stick to them
!   Reserved words (in this talk set in blue) must not be used as names

(signals, variables, …)
!   Identifiers (names for variables, signals, labels, entities, …) must be

unique within the scope of the namespace (within an entity-architecture
block)

!   VHDL supports both behavioral and structural (and mixed) design
!   there are different ways of how to implement the same design

!   VHDL supports statements and expressions that cannot be synthesized
and may be for simulation only (e.g. delay times, …)

26.02.2013 4

!   VHDL knows several object types like signal (represents a wire),
variable and constant  define types of objects

!   Data types define types of values of these objects
!   Basic data types are scalars like:

!   integer, signed, unsigned, boolean
!   std_logic  standard data type for electronic designs with 9

different states (some are only relevant for simulation)
!   ‘0‘, ‘1‘ – logic levels
!   ‘U‘, ‘X‘, ‘W‘ – uninitialized,

unknown, weak unknown
!   ‘Z‘, ‘L‘, ‘H‘ – high impedance,

weak 0, weak 1
!   ‘-‘ - don‘t care (for synthesis)

type bit is (‘0’, ‘1’);

type byte is array(7 downto 0) of bit;

type bus is array(0 to 7) of std_logic;

-- or (btw. this is a comment):

type bus is std_logic_vector(0 to 7);

type myrec is record(A: bit; B: byte)

end record myrec;

. . .

constant MAXVAL: integer := 127;

signal mybus: std_logic_vector(7 downto 0);

variable counter: integer range 0 to 127;

!   Composite data types are
collections of scalar type
!   arrays (e.g. for buses)
!   records (similar to C)

26.02.2013 5

!   Libraries (library) are used to aggregate and provide objects and types for
re-usage

!   Commonly used are some IEEE libraries:
!   ieee.std_logic_1164  provides standard types for signals:

std_logic and std_logic_vector
!   ieee.std_logic_arith  provides basic arithemtic, conversion, and

comparison functions for signed, unsigned, integer and std_logic
!   ieee.std_logic_unsigned  provides signed/unsigned arithmetic

and conversion for std_logic_vector

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;

...

signal A,B: std_logic_vector(7 downto 0);

...

if A - 1 >= ‘0’ then
 B <= A - ‘1’;
else ...

26.02.2013 6

&

26.02.2013 7

&

26.02.2013 8

!   To allow for hierarchical designs entities can be used as components within
other entities through:
!   Declaration (component)  has to match exactly the entity definition
!   Instantiation with unique name and specification of port connectivity via

the port map  ordering (and type) has to match the component!
declaration!

Example: NAND composed of AND

26.02.2013 9

!   The port map ordering has to match the componet
OR:

!   The signals/ports have to be connected explicitly by names

26.02.2013 10

!   Concurrent statements
!   Signal assignment
!   Conditional signal assignments
!   Selected signal assignments

!   Whenever one of the dependent signals
changes the assignment is updated
!   continuous assignment

!   All statements are updated concurrently/in parallel

 Important:
!   Signals must not be driven by more than one other signal

26.02.2013 11

!   Processes themselves are executed concurrently
!   Processes are usually triggered by one or more signals

 defined by the sensitivity list
!   Statements inside processes are executed sequentially

!   signals hold the last assigned value at the end of the process
!   Inside processes variables can be used
!   If-else-, case-when- and for-loop-statements can be used inside
!   Usually used as clocked processes for pipelined designs

26.02.2013 12

!   D-Flipflop with async. reset !   D-Flipflop with sync. reset

!   Also CLK’event and CLK = ‘1’ instead of rising_edge(CLK) is
common syntax

!   Of course, also falling_edge() can be used for processes on the falling
edge (or: CLK’event and CLK = ‘0’)

26.02.2013 13

!   Signals represent physical wires
!   assignment via “<=”
!   allow communication between processes and components
!   concurrently connect different design units
!   update is scheduled with an associated delay (at least a delta delay)

within processes
!   can exist inside and outside of processes
!   can only be driven by one process at a time

!   Variables can be seen as placeholder for the assigned value
!   assignment via “:=”
!   updated immediately (no delay)
!   only exist inside of processes
!   follow more the logic of non-HDL programming/easier to read(?)

26.02.2013 14

!   Using signals: !   Using variables:

26.02.2013 15

Syntax Example

if conditional_expression then
 statement(s)
elsif conditional_expression
 statement(s)
else
 statement
end if;

if rising_edge(clk) then
 out <= A xor B;
 if cnt > 0 then
 cnt <= cnt + 1;
 end if;
end if;

26.02.2013 16

!   Generate statement

!   Evaluated during the circuit
elaboration step
 similar to macros in C

!   used to repeat instantiation
constructs

!   used to create conditional
instantiations

!   index in the “for” construct has
local scope and can be used to pick
specific signals from an array in
portmap statements.

26.02.2013 17

!   Numbers
!   Scalar constant: ‘0’, ‘1’
!   Array constant: “0010”, “0100”, ..
!   hexdec. values: x”00”, x”3F”, …

!   Arrays
!   concatenation:

A <= B & C;
B <= ‘0’ & ‘1’ & “10”; -- 0110

!   others:
A <= B”101” & (others => ‘0’); -- 1010 0000
B <= (others => ‘1’); -- 1111 1111

!   named, partial assignement:
A <= (3=>’1’, others=>’0’); -- 0000 1000

26.02.2013 18

Operator Type Operator

Arithmetic operators *, /, +, -, mod, rem
Logical operators and, or, not, nand, nor, xor, xnor
Relational operators >, <, >=, <=
Equality = , /=
Bitwise operators and, or, nand, nor, xor, xnor
Shift Operator sll, srl (logical, i.e. fill with 0s)

sla, sra (arithmetic)
Concatenation &

26.02.2013 19

