
Observations, recommendations…

… and personal opinions …

Uli Schäfer 1

Tools and things

• It’s the tools ! Most often. In the past two decades
anyway…

• Various flavours (ISE/PlanAhead/Vivado)

• Versions (10.x-14.x),

• 32bit / 64bit (not all run on all computers)

• Bugs

• Read that document !

• Xilinx document navigator !!!

• Explore the web page

• Community pages

• Don’t ignore that message !

• Plenty of warnings, errors

• Sometimes misguiding, but…

Uli Schäfer 2

System level / board level considerations

Partition your system and boards appropriately:

• Asynchronous, simple code with predictable I/O timing

• Circuitry that needs to be operational just after power-up
 consider use of a CPLD

• Slow control code
 consider use of a micro controller, or…

 see embedded course

• Highly parallel, low latency, pipelined code ideally suited
for implementation in FPGAs

• And occasionally, fixed function off-the-shelf components
might still be the most effective choice…

Uli Schäfer 3

VHDL coding for FPGAs

• Code any test bench as you like

• Not all constructs are synthesizable

• May wish to initialize signals and variables to allow for
simulation

• Use of concurrent code allows better control of synthesis
results

• Particularly important for low latency designs

• If you want to minimize risk of generating inefficient,
dysfunctional, not synthesizable code, prefer clocked
processes

• For synchronous code (see below) functional simulation
will be very effective for validating your design (see
below)

• Some designs might require careful timing simulation
(post place and route)

Uli Schäfer 4

Synchronous designs

• FPGAs generally unsuitable for asynchronous designs (with few
exceptions / Achronix)

• Make sure designs are fully synchronous, pipelined (avoid even
asynchronous set/reset of flip-flops, if possible)

• Have all data paths starting and ending in an I/O flip-flop
• Intersperse combinatorial logic with flip-flops as needed, to

arrive at required clock frequency
• Try to keep # of clocks to minimum
• Require synchronization scheme where crossing clock domains
• For latency critical designs

• Keep # pipeline stages as low as possible
• Make sure the design tool is not inferring shift registers

rather than flip-flops

Uli Schäfer 5

IOB IOB

Attributes

• The implementation flow can be controlled by global
settings (in the ISE GUI) and by attributes

• Attributes are set within the VHDL code

• Two examples of attributes attached to signals that were
declared somewhere above:

• Force a flip-flop into an IOB:

attribute IOB : string;

attribute IOB of output_signal : signal is "true";

• Prevent shift registers from being inferred:

attribute shreg_extract : string;

attribute shreg_extract of internal_signal: signal is "no";

Uli Schäfer 6

Constraints

.ucf files for Xilinx ISE tools

.xdc for Vivado

Timing constraints

• For fully synchronous designs specification of clock frequency
is generally all that’s needed

• With a design verified at functional level, and with correct
timing constraints, your implementation will generally yield
predictable results

Pin constraints

• Make sure all pins found in port of top level entity are
constrained

• Make sure I/O bank voltages and logic level of signals are
properly constrained

• Constraints can alternatively be set via VHDL attributes

Uli Schäfer 7

