Observations, recommendations...

... and personal opinions ...

Uli Schafer



Tools and things

« It'sthe tools! Most often. In the past two decades
anyway...

« Various flavours (ISE/PlanAhead/Vivado)

« Versions (10.x-14.x),

« 32bit / 64bit (not all run on all computers)
 Bugs

« Read that document !
« Xilinx document navigator !!!
« Explore the web page
« Community pages

 Don’t ignore that message !
« Plenty of warnings, errors
« Sometimes misguiding, but...

Uli Schafer



System level / board level considerations

Partition your system and boards appropriately:

« Asynchronous, simple code with predictable I/O timing

« Circuitry that needs to be operational just after power-up
- consider use of a CPLD

« Slow control code
- consider use of a micro controller, or...

- see embedded course

- Highly parallel, low latency, pipelined code ideally suited
for implementation in FPGAs

« And occasionally, fixed function off-the-shelf components
might still be the most effective choice...

Uli Schafer



VHDL coding for FPGAs

« Code any test bench as you like
* Not all constructs are synthesizable

« May wish to initialize signals and variables to allow for
simulation

« Use of concurrent code allows better control of synthesis
results

« Particularly important for low latency designs

« If you want to minimize risk of generating inefficient,
dysfunctional, not synthesizable code, prefer clocked
processes

 For synchronous code (see below) functional simulation
will be very effective for validating your design (see
below)

« Some designs might require careful timing simulation
(post place and route)

Uli Schafer



Synchronous designs

 FPGAs generally unsuitable for asynchronous designs (with few
exceptions / Achronix)

 Make sure designs are fully synchronous, piBeIined (avoid even
asynchronous set/reset of flip-flops, if possible)

 Have all data paths starting and ending in an I/O flip-flop

« Intersperse combinatorial logic with flip-flops as needed, to
arrive at required clock frequency

« Try to keep # of clocks to minimum
« Require synchronization scheme where crossing clock domains
« For latency critical designs

« Keep # pipeline stages as low as possible

 Make sure the design tool is not inferring shift registers
rather than flip-flops

s B s
OO

10B |0B

Uli Schafer



Attributes

 The implementation flow can be controlled by global
settings (in the ISE GUI) and by attributes

e Attributes are set within the VHDL code

« Two examples of attributes attached to signals that were
declared somewhere above:

« Force a flip-flop into an IOB:
attribute IOB : string;
attribute I0OB of output_signal : signal is "true";

« Prevent shift registers from being inferred:
attribute shreg_extract : string;
attribute shreg_extract of internal_signal: signal is "no";

Uli Schafer



Constraints

.ucf files for Xilinx ISE tools
.Xdc for Vivado

Timing constraints

« For fully synchronous designs specification of clock frequency
is generally all that’s needed

« With a design verified at functional level, and with correct
timing constraints, your implementation will generally yield
predictable results

Pin constraints

« Make sure all pins found in port of top level entity are
constrained

« Make sure I/O bank voltages and logic level of signals are
properly constrained

« Constraints can alternatively be set via VHDL attributes

Uli Schafer



