Latest results from irradiation test-beam campaigns

Alexandra Junkes Helmholtz Allianz meeting February 28th 2013 Mainz

Expected radiation depending on position in detector for HL-LHC

Expected radiation damage very similar for ATLAS and CMS

28.02.2013

Outline

- Introduction
- Planar sensors
- New structures

A future HL-LHC tracker should

- Have a better resolution
- Be more radiation hard
- Have less mass
- Save power
- Avoid dead regions
- Contribute to L1 trigger
- Be cost efficient

Sensor Topics

Defect/material characterization

- -General understanding of radiation damage
- -Methods: DLTS, TSC...
- -Investigate defects in the Si-bulk (and at the surface)

Simulations

- -Optimize geometry -Understand effects like trapping and charge multiplication -Forecast radiation damage
 - I_{leak}, V_{dep}, CCE...

Detector characterization

Testing of Si-materials and structured devices for response to radiation damage
Methods: CV, IV, TCT, eTCT, source measurements, test-beam
Investigate V_{dep}, I_{leak}, signal, noise, trapping

New structures

-3D

- -Thin detectors
- -Charge multiplication devices
- -Active edges
- -Cost effective solutions

Outline

- Introduction
- Planar sensors
- New structures

Simulation Efforts

28.02.2013

A. Junkes, 6th Alliance Detector Workshop

CMS tracker upgrade campaign

Radiation hardness of silicon defined by growth process

- Oxygen content (MCz, FZ, dd-FZ, Epi)
- Influence of doping and sensor thickness (100 μm – 320 μm)
- → Study diodes
- \rightarrow Obtain: V_{dep}, I_{leak}, C_{end}, CC, defect parameters

Study best design parameters for structured devices

- Strip layout & and influence of sensor thickness
- Influence on n-type and p-type material
- → Strip and multi-geometry strip sensors
- \rightarrow Obtain: V_{dep}, I_{leak}, CC, S/N, strip parameters

Available techniques:

CV/IV, TCT, e-TCT, source measurements, DLTS, TSC Minimize differences in processing by using one vendor!

A. Junkes, VCI2013, Vienna

UH

Current above full depletion

A. Junkes, 6th Alliance Detector Workshop

Expectation for mixed irradiations

Neutron + 23 GeV proton irradiation

- Leakage current increases in accordance with received $\Phi_{e\alpha}$
- FZ: damage accumulated
- MCz-n: damage compensated
- → Donors introduced in p irradiation compensated by acceptors introduced in n-irradiation

Ĥ

Mixed irradiations: 23 MeV Protons

Ĥ

Mixed irradiations: 23 MeV Protons + Neutrons

Charge Collection from strip sensors

Measurement: β -setup with Alibava read-out

- FZ320 collects more charge up to Φ_{eq} =1x10¹⁵ cm⁻²
- No significant difference between 200 μ m and 300 μ m above Φ_{eq} =1x10¹⁵ cm⁻²

UH

Charge Collection from strip sensors

Measurement: β -setup with Alibava read-out

- FZ320 collects more charge up to Φ_{eq} =1x10¹⁵ cm⁻²
- No significant difference between 200 μm and 300 μm above Φ_{ea} =1x10^{15} cm^{-2}

UH

ATLAS planar n-in-p strip sensors

ATLAS Inner Tracker Fluences at the HL-LHC MeV neq fluence $[cm^{-2}]$ / 3000 fb^{-1} all (Z=0 cm) neutron 10¹⁷ pixel lavers 10¹⁷ charged pion proton 10¹⁶ 10¹⁶ short strips long strips 10¹⁵ 10¹⁴ 10¹ 10¹³ 10¹³ Sheffield FLUKA 2013 80 100 20 40 60 Radius from beamline [cm]

UH

11

28.02.2013

Mixed irradiation:

Irradiations corresponding to 3 specific radii in ATLAS ("strawman" layout v14-2009)

	fluence in n _{eq} /cm ²			
radius	pions	protons	neutrons	sum
19.0 cm	9.3×10^{14}	1.9×10^{14}	9.5×10^{14}	2.1×10^{15}
17.6 cm	1.2×10^{15}	1.9×10^{14}	1.0×10^{15}	2.4×10^{15}
14.2 cm	1.4×10^{15}	2.6×10^{14}	1.1×10^{15}	2.8×10^{15}

 Small n-in-p strip sensors from Hamamatsu, part of "ATLAS 07" production

- p-stop strip isolation, FZ silicon
- 320 μ m thick, 74.5 μ m strip pitch
- Size 1 cm x 1 cm (strip length 0.8 cm)
- AC coupling, 6.7 kΩcm resistivity

S. Kuehn, 21st RD50 meeting, 2012, CERN

Charge collection for n-in-p strip sensors

Collected charge increases with V_{bias}
Max. signal after 2.8x10¹⁵ cm^{-2:} 11-16 ke (1000V)

Ileak at -21 °C similar values for all fluences:

- At 400V: I_{leak}= 40 µA
- At 800V: I_{leak}= 64 μA

28.02.2013

UH

11

S. Kuehn, 21st RD50 meeting, 2012, CERN

Active edges

Active edges: Deep Reactive Ion Etching + Side implantation Reduce dead areas in sensors Planar junctions Planar junctions SiO2 SiO2 Saw Dead Depleted Depleted cut Active region region region zone Edge Р P+ P+ Trench doped by four-quadrant implantation Pixel-to-trench distance as low as 50 µm p·Ag≥źt Sensor thickness 100-200 μm Edge implantation **|≼**50um**≽**| **≼**50um**≻** 1 detector wafer 50um Óxide (~lum) support wafer Phosphorus doping Silicon oxide Boron doping A. Macchiolo, VCI2013, Vienna

Ηř

Characterization of active edge

<u>n-in-p sensors</u>

UH

Ĥ

A. Macchiolo, VCI2013, Vienna

18

3D Detectors

328

395 (1997)

Charge multiplication

Impact ionization in silicon begins when the electric field reaches 10-15 V/μm

Charge Multiplication measured after high levels of irradiation with different techniques and in several different types of devices

Fi T

Charge multiplication studies

Dedicated RD50 sensors:

Geometry Depth (d = 150 μm, 305 μm, 675 μm) Width/pitch (0.075 < w/p < 0.75) Interstrip Active area: 10.18 mm x 11.76 mm Processing Diffusion time Implantation energy

MICRON strip detectors of various geometries
1 cm x 1 cm, n-in-p FZ strip detectors developed by
MICRON
5 type of wafers were produced: standard, double diff.
time, double implant energy, thick and thin

Multiplication effects

Ĥ

28.02.2013

- CM only seen at V_{bias} > 600V
 Both Extr. Diff. and 2E imp. Show signs of CM with respect to standard wafer
- Lower w/p ratio leads to more pronounced multiplication (as expected)

C. Betancourt, 21st RD50 meeting, 2012 CERN

A. Junkes, 6th Alliance Detector Workshop

Summary

Mixed irradiations important for accurate analysis of expected damage in sensors

Planar sensors perform pretty well for the strip region

3D detectors, active edge design, charge multiplication under development

TCT techniques

28.02.2013

Ĩ

Charge and velocity profiles from e-TCT

A. Junkes, 6th Alliance Detector Workshop

UH

Beta Source Measurements

- MIPs from a ⁹⁰Sr source are used to perform charge collection measurements
- Time between trigger signal and edge of a 10 MHz clock is measured by the ALIBAVA TDC
- For each event, channel with largest SNR is chosen, and mean is calculated for each 1 ns time bin
 Only events in 10 ps
- Only events in 10 ns window around max are considered
- Resulting spectrum is fitted with a convolution of a Gaussian and Landau distribution to determine MP\

υн

Ηř