Future Directions in Track Triggering

André Schöning Physikalisches Institut, Universität Heidelberg

6th Detector Workshop Helmholtz Alliance "Physics at the Terascale" Mainz, 1st of March , 2013

 $H \rightarrow Z Z \rightarrow \mu \mu \mu \mu$ candidate

Run Number: 189280, Event Number: 143576946 Date: 2011-09-14, 11:37:11 CET

EtCut>0.3 GeV PtCut>3.0 GeV Vertex Cuts: Z direction <1cm Rphi <1cm

Muon: blue Cells:Tiles, EMC

> Muons signatures require track triggers!

Persint

Highly Selective Track Triggers

Andre Schöning, PI Heidelberg

6th HA Detector Workshop, Mainz, March. 2013

Track Trigger Generations

The birth and evolution of track triggers was and is closely related to the progress in higly integrated circuitry

- •Programmable Logic Devices (PLD)
- •Gate Array Logic (GAL)
- •Complex Programmable Logic Device (CPLD)
- •Field Programmable Gate Arrays (FPGA)

> 1970

Altera CPLD

First Generation Track Triggers

IS THERE TRACK?

First Generation Track Triggers

IS THERE TRACK?

Note: early "low" luminosity colliders (e.g. PETRA, LEP, HERA) with mostly empty collisions

First Generation Track Triggers

Early track triggers

- only in two-dimensions (2D)
- low track multiplicity
- coarse resolution
- based on programmable gate arrays
- already quite fast (~1 µs)

Complex Programmable Logic Device

trigger information:

- how many tracks
- momentum
- direction (vertex)
- timing
- even topology (back to back)

Next Generation of Track Triggers

ARE THERE GOOD TRACKS?

Next Generation of Track Triggers

ARE THERE GOOD TRACKS?

Paradigm:

- good tracks as signal for collision events
- bad tracks or unmatched hits indicate background events

Track Quality and Quantity

 \rightarrow good resolution required!

Good or bad event?

Hits as seen in the central H1 drift chambers at HERA

Good or bad event?

Hits as seen in the central H1 drift chambers at HERA

2nd Generation of Track Triggers

high parallelism

Implementation: • large size FPGAs

FPGA Manufacturers:

- Altera
- Xilinx
- Atmel
- Actel
- Lattice (AT&T/Lucent)

H1 track trigger system with >2800 FPGAs

• L1 latency ~ 2 µs

3rd Generation of Track Triggers

High Precision Track Triggers

close to offline reconstruction (3D, precision, PID)

Implementation:

- Content Addressable Memories (CAM)
- Signal Processors (DSPs)
- modernst FPGAs

- hit combinatorics
- ✤ fast track fits
- multi-purpose (memory, CAM, DSP)

Andre Schöning, PI Heidelberg

13

Why are Track Triggers so fast?

Reconstruction time per track:

- offline (CPU based) ~ O(1 ms)
- trigger (special HW) ~ $O(1 \ \mu s)$
- track triggers are about 1000 times faster than offline reco!

Answer:

- dedicated hardware
- high parallism
- simplifications

- solve combinatorics
- high multiplicities
- bandwidth reduction
- and use of "clever" reconstruction methods

Hough Transformation

P.V.C Hough, Method and means for recognizing complex patterns, US Patent 3069654.

Transformation from cartesian coordinates to track parameters using primary vertex constraint

Vector Tracking

Hough transformation of **vectors** to track parameters using primary vertex constraint

vectors obtained from coincidences in e.g. double layers

Iuster position defines track parameters

computationally easy (e.g. sliding window) and can be parallised!

H1 Fast Track Trigger (2004-2007)

L1 bandwidth is limited \rightarrow use only subsample of drift chamber layers 12/56

H1 Fast Track Trigger (2004-2007)

L1 bandwidth is limited \rightarrow use only subsample of drift chamber layers 12/56

Search for hit combinations (track segment=vector) using Content Addressable Memories and get associated track parameters (κ , ϕ) (<< 1µs)

FTT: 4-10¹² pattern comparisons / second!

H1 Fast Track Trigger – L1 Linker

• total histogram size 16 x 60

• cluster search: use big FPGA to localize cluster (960 bins in parallel)

Andre Schöning, PI Heidelberg

6th HA Detector Workshop, Mainz, March. 2013

Content Addressable Memory

FTT: CAM used for fast track segment finding to solve combinatorial problem

simply spoken: a CAM is an inverse RAM

Ternary Content Addressable Memory

Feature: "Don't Care" Bits

Ternary CAM Feature "Don't Care" Bits

hit pattern

CAM data: unencoded hit representation

\rightarrow this pattern would match

Bonus:

also possible to veto specific hit positions (→resolve ambiguities)

Evolution in Circuitry

Memories with more than 1 billion transistors!

Scaling of First Level Track Triggers

	CDF-XFT	H1-FTT L1	ATLAS L1TT *	*self seede
Bunch Cross rate	132 ns	96 ns	25 ns	
Latency	5.5 μs	2.3 μs	2.4 μs	
Processing time	1.5 μs	0.5 μs	~1.0 μs	
Input	16000 wires	450 wires	25 mill. strips	
Layers used	12 x 4	3 x 4	2 x 3	
Bandwidth IN	183 Gbit/s	670 Gbit/s	900 Tbit/s	
Min p _T	1.5 GeV/c	0.1 GeV/c	~10 GeV/c	
Max 1/p _T	0.6 (GeV/c) ⁻¹	10 (GeV/c) ⁻¹	~0.1 (GeV/c) ^{.1}	
regions	24	30	10000	max
patterns/region	~350	3072	~3 million	resolution
Max. tracks	288	~50	~10000	
operation	2001-2013	2004-2007	2020?	

LHC: two-three orders of magnitude increase in

- number of channels/bandwidth
- track multiplicities
- number of patterns

Evolution of Associative Memory Chips

... this goes along with a dramatic increase in CAM memory size

CAMs mainly used for network routing/switching

most recent:

NLA 12000 KBP

(Broadcom, 28nm)

- \rightarrow 2.4·10⁹ search decisions/s
- \rightarrow 2 million addresses (128 bit words)
- \rightarrow aggregate bandwidth 300 Gbps

Fast Track Triggers for HL-LHC?

Installion of 1000-10000 modern CAMs solves all track reconstruction problems

- speed (latency)
- bandwidth
- memory size

Fast Track Triggers for HL-LHC?

if one can get access to the data...

Data Bandwidth Problem at Hi-LHC

High luminosity LHC: $L \sim 10^{35} \text{ cm}^{-2}\text{s}^{-1}$

Possible solution \rightarrow **filter hits**

ATLAS + CMS:

impossible to get all hit data out with nowadays readout technologies! (without impairing detector performance)

Andre Schöning, PI Heidelberg

6th HA Detector Workshop, Mainz, March. 2013

ATLAS Utopia Design

Reduction of Tracker RO Bandwidth

Perform on-detector rate reduction (filtering):

Use Vector Tracking!

+ beamline constraint

stacked layers:

Reduction of Tracker RO Bandwidth

Perform on-detector rate reduction (filtering):

Use Vector Tracking!

+ beamline constraint

stacked layers:

can also exploit cluster size

Local Coincidence (Stub Reco)

CMS \rightarrow talk by Duccio Abbaneo

Andre Schöning, PI Heidelberg

6th HA Detector Workshop, Mainz, March. 2013

The Two Concepts for Hit Filtering

"Self Seeded Track Trigger"

- momentum filter of clusters
- cluster size + local coincidence
- special HW design required
- all high p_τ tracks

baseline for CMS (option for ATLAS)

"Region of Interest"

- spatial cluster filter
- external trigger information (calo, muon, ...)
- new level L0 trigger required
- all tracks in regions

baseline for ATLAS L1 Track Trigger

6th HA Detector Workshop, Mainz, March. 2013

0.8

0.9

B TAGGING EFFICIENCY

0.7

Andre Schöning, PI Heidelberg

-2000

ATLAS silicon tracker (phase I)

III ——— III

fast pattern lookup > 800 M patterns (AM chip)

1000

fast track paramteter fits within 50 µs (DSPs)

second trigger level (L2)

FTK exploits:

600

500

400

300

200

100

→ FTK talk by Björn Penning

FTK b-tagging

0.6

light quark rejection vs. efficiency

SIGNED DO SIGNIFICANCE LIKELIHOOD

ATLAS Fast TracKer Project (FTK)

plane 0 plane 1

plane 2

plane 3 plane 4

34

2000

-1000

plane 5 plane 6 plane 7 plane 8 10 plane 9 plane 10 3000

0.4

0.5

Feature "Don't Care" Bits

unencoded hit representation

encoded hit representation

Associative Memory Chip

AM Chip Evolution

<u>Year 2000:</u>

- 256 chips
- 128 patterns/chip
- ~30k patterns/board

- Year 2006:
- 128 chips
- 5000 patterns/chip
- ~500k patterns/board

<u>Year ~2014:</u>

- 128 chips
- 120 000 patterns/chip
- ~15M patterns/board

3D Opportunities

- Key advantages over planar chip design
- more memory on chip
- traces factor 1000 shorter
- much faster
- reduced power

ideal design for planned L1 track triggers at ATLAS and CMS

NEURONS application (FP7)

Future Directions of Track Triggers

thanks to progress in silicon industry...

- hit combinatorics problem addressed by modern CAMs
 - \rightarrow opportunities for custom-made 3D ASICs
- track fitting problem addressed by fast (parallel) processing units (cores) and since recently by graphical processing units (→ next talk Nik Berger)

Backup

The High Luminosity Regime

ATLAS muon identification

(similar plot for CMS)

- muon trigger rates
 reasonable after linking
 with inner detector (L2)
- but reduced selectivity at higher pile up rates!
- Idea: exploit track-muon link already at first level

SVT Trigger: Lookup with AM Chip

Associative Memory

CDF SVT: The Track Finding Task

from Luciano Ristori

On Detector High P_T Track Filter

exploit two or more stacked layers

CMS: baseline design ATLAS: design option

Andre Schöning, PI Heidelberg

6th HA Detector Workshop, Mainz, March. 2013

CAM vs. AM chip

Content Addressable Memory

- high input bandwidth (unencoded)
- parallel input (fast)
- matches can be exclusive
- very high flexibility (e.g. 5/6)

Associative Memory

- small input bandwidth (hit address)
- "economic design"
- input sequential (slow)
- several similar matches possible
- $(\rightarrow hit/road warrior)$ track isolation!

ATLAS Utopia Strip Layer Design for Phase II

Pixel + Strip Sensor Layers

Long Strips ($\Delta z = 10cm$)

Short Strips ($\Delta z=2.5cm$)

Pixel (not used)

Layer combinations studied for track trigger:

- #0, #1, #2 (only short strips)
- #3, #4 (only long strips)
- #2, #3, #4 (mixed, outer layers)