Introduction	Computing model	Current status	Data management at a site	Conclusion

LHC Computing in der Hochenergiephysik

Hartmut Stadie Universität Hamburg

LSDMA 2013 Spring Meeting 11-13 March 2013

SPONSORED BY THE

Introduction	Computing model	Current status	Data management at a site	Conclusion ○
		Outline		

- Introduction
 - The LHC
 - The data
- Computing model
 - Motivation
 - The CMS computing model
- Current status
 - Tier-0/1
 - Tier-2
- Data management at a site
 - Data management at a site
- Conclusion
 - Conclusion

Introduction ●○○○ Computing model

Current status

Data management at a site

Conclusion

The Large Hadron Collider (LHC)

- proton-proton collider
- circumference:
 26.66 km
- $\sqrt{s} = 7 8$ TeV
- crossing rate: 50 ns rate: 20 MHz
- data per crossing (event): ~ 1 MB
- collider experiments: ALICE, ATLAS, CMS, LHCb,...
- online filter: output rate \sim 500 MB/s

Introduction

Computing model

Current status

Data management at a site

Conclusion

The CMS Experiment

troduction ○○●	Computing model	Current status	Data management at a	site	Conclusion
	D .	~			

Data Organization

Physicists analyze the data requiring specific signatures (final states/channels).

Collider data:

- split directly into O(10) primary data sets (PD) based on event signatures
- every PD in 2012 consists of roughly 100 TB

Simulated events:

- comparisons with simulation to find deviations from the standard theory (e.g., new particles like the Higgs boson), measure properties
- overall size (in transfer DB): at least 10 PB

A typical analysis of the 2012 data might run over 200 TB a couple of times.

LHC Computing in HEP

 Computing model
 Current status
 Data management at a site

 •00000
 OOO
 OOO

 Worldwide LHC Computing Grid (WLCG)
 OOO

provides resources and services to LHC experiments

highly distributed system

Introduction

Conclusion

Introduction

Computing model

Current status

Data management at a site

Conclusion

Worldwide LHC Computing Grid (WLCG)

current overall resources sorted by the different classes of computing sites (Tiers):

Name A Sites	CPUs			Online Storage Space (GB)		Nearline Storage Space (GB)		
мате	vanie Sites y	Physical 🜲	Logical 🔷	\$12000 \$	TotalSize 🜲	UsedSize 🜲	TotalSize 🜲	UsedSize 🜲
0	1	5,228	27,564	171,558,336	33,423,802	73%	80,583,197	91%
1	12	30,705	92,091	233,409,658	88,468,065	70%	102,050,988	45%
2	107	31,856	171,365	418,632,474	137,697,045	44%	1,235,440	68%
3	29	1,562	8,143	16,341,756	2,913,321	59%	0	0%
Total	149	69,351	299,163	839,942,224	262,502,233	150,186,250	183,869,625	121,311,029

on top of bare resources:

- fabric: batch systems, storage system
- tools for resource sharing
- collective tools

Introduction Computing model Current status Data management at a site Conclusion

CMS Computing Model

Introduction	Computing model ○○○●○○	Current status	Data management at a site	Conclusion O		
Data Flow						

Computing model

Introduction

Current status

Data management at a site

Conclusion

Experiment-Specific Services

Experiment-Specific Services:

needed for distributed computing:

- production agents based on grid tools (WLCG job submission)
- dataset database (DBS) and trivial file catalog at sites
- dataset transfer service (PhEDEx)
 - uses grid tools (FTS, SRM) (as of 5 years ago)
 - special interfaces to Castor, dCache, etc) for file validation (checksums) and integrity tests
 - DB for transfers, dataset locations, commissioned links
 - agents for scheduling transfers, consistency checks, deletion, etc
 - transfers requests need to be approved by data manager of destination site
- (distributed) calibration database (FroNTier) squid web cache
- analysis job submission tool (CRAB) grid tools (WLCG job submission), bridges to local batch systems

Introduction	Computing model	Current status	Data management at a site	Conclusion

Introduction
 The LHC
 The data

• Computing model

- Motivation
- The CMS computing model

Current status

- Tier-0/1
- Tier-2
- Data management at a site
 Data management at a site
- Conclusion
 Conclusion

T2 TW Taiwan

Total: 76,426 TB, Average Rate: 0.00 TB/s

T3 US TAMU

Hartmut Stadie

T2 IT Pisa

T2 IN TIFR

^{...} plus 57 more

LHC Computing in HEP

Introduction Computing model Current status Data management at a site Conclusion

T2-T2 fraction: 25%

roduction	Computing model	Current status ○○○○○○○●○	Data management at a site	Conclusion O
	_	Tier-2 activit	ies	

LHC Computing in HEP

In

21/26

LHC Computing in HEP

Hartmut Stadie

22/26

DESY houses National Analysis Facility: local space > 1 PB

troduction	Computing model	Current status	Data management at a site	Conclusion
			000	

Management of local data

Workflow

- users request datasets
- data manager approves request if justified
- data manager also identifies and requests samples of common interest
- every month popularity is evaluated based on dCache access logs
- unused samples are scheduled for deletion after a grace period

Problems

- PhD thesis lasts three years (requests for outdated data)
- users hardly request the deletion of old data
- no trust in file transfers, do not see Tier-2 storage as a cache
- want to have all data at one place

Example for January

ntroduction	Computing model	Current status	Data management at a site	Conclu
0000				•
		<u> </u>		

Conclusions

Lay person's conclusions

- LHC experiments deal with large data
- use "divide et impera" to break problems down
- resources and middleware from WLCG
- experiment specific tools needed
- good separation and interfaces between sites for scaling needed
- data management very difficult (centralized systems to rigid, by-demand/request system needs resources to scale with data)

sion