LIGHTOPTICAL NANOSCOPIE

MARCH 12TH, 2013 NICK KEPPER MICHAEL HAUSMANN JÜRGEN HESSER

WALK THROUGH THE NANO-COSMOS OF THE CELL

THE LAST 25 YEARS OF CHROMATIN STRUCTURE RESEARCH

Alberts et al. 1983 Alberts et al. 1994

Alberts et al. 2002 All

Alberts et al. 2007

STANDARD FISH vs. COMBO-FISH

STANDARD FISH vs. COMBO-FISH

FROM COMBO TO FISH

p12 p 13.1 e р p 13.2 q 11.2 q 12 e q 21.1 g 21.2 q 21.31 q 21.32 q q 21.33 q 22 q 23.2 R q 23.3 q 24.2 B q 25.1 q 25.3 Chromosome 17 PNA oligomere sequence (Oregon Green) PNA oligomere sequence (Texas Red)

5'-cccctcctctttccc-3'

Probe selection

RELATION HER2/NEU TO CEP17 CAN BE CONNECTED TO BREAST CANCER

Wagner J, et al.; 2011; MIAAB

DIFFRACTION LIMIT IN CONVENTIONAL LIGHT MICROSCOPY

Resolution limit (diffraction limit): Full Width at Half Maximum of the Point Spread Function (FWHM of PSF) not considering: optical separation by different colours or dye effects

SPECTRAL POSITION DETERMINATION MICROSCOPY

Time stack of images: 400 – 2000 frames

Precision Localization: < + 5 nm

Time stack of images: 400 – 2000 frames

Precision Localization: < + 5 nm

Time stack of images: 400 – 2000 frames

Precision Localization: < + 5 nm

Time stack of images: 400 – 2000 frames

Precision Localization: < + 5 nm

Time stack of images: 400 – 2000 frames

Precision Localization: < + 5 nm

Time stack of images: 400 – 2000 frames

Precision Localization: < + 5 nm

Time stack of images: 400 – 2000 frames

Precision Localization: < + 5 nm

Time stack of images: 400 – 2000 frames

Precision Localization: < + 5 nm

Time stack of images: 400 – 2000 frames

Precision Localization: < + 5 nm

Time stack of images: 400 – 2000 frames

Precision Localization: < + 5 nm

Time stack of images: 400 – 2000 frames

Precision Localization: < + 5 nm

Time stack of images: 400 – 2000 frames

Precision Localization: < + 5 nm

Time stack of images: 400 – 2000 frames

Precision Localization: < + 5 nm

Time stack of images: 400 – 2000 frames

Precision Localization: < + 5 nm

Time stack of images: 400 – 2000 frames

Precision Localization: < + 5 nm

SPDM OF NUCLEOSOMES HELA CELL LINE WITH H2B - GFP

interphase

prometaphase

metaphase

SPDM OF NUCLEOSOMES METAPHASE CHROMOSOMES

no significant compaction difference

3D – NANOARCHITECTURE OF NUCLEOSOMES

Localization image of nucleosomes: Detected fluorochromes: ~ 70000 /image section Neighbors 200 nm / 1000 nm

3D – NANOARCHITECTURE OF NUCLEOSOMES

3D – NANOARCHITECTURE OF NUCLEOSOMES

SPDM OF NUCLEOSOMES: FIBROBLASTS HELA CELL LINE

Nanoscale results:

Distinct structures below dimensions of 100 nm

Different expression mechanisms lead to different structures

No cell type dependence

Bohn M, et al.; 2010; Biophys. J.

SPDM OF HETERO- AND OF EU-CHROMATIN AFTER γ - IRRADIATION

Nucleosomes: H2A-YFP H2B-GFP

Alexa 568: antibodies against heterochromatic regions: H4K20me3

antibodies against euchromatic regions: H3K4me3

Cluster determination: Within 40 nm minimum 3 next neighbours

CHANGES OF NANOARCHITECTURE DURING REPAIR

all nucleosomes

4 Gy

CHANGES OF NANOARCHITECTURE DURING REPAIR

0.5 Gy

4 Gy

CHANGES OF NANOARCHITECTURE DURING REPAIR

CONCLUSION

- Distance measurements in the 10 nm range (= 1/50 wavelength of green light) with a precision of < 5 nm
- Tool to analyse 2D/3D nano-structures in intact nuclei and cells
- Fast image acquisition (~ $2 \min / 2D$; ~ 2 h / 3D)
- Approx. 2 GB per 2D SPDM image / 100 GB per 3D SPDM image

ACKNOWLEDGEMENT

- The Labs of M. Hausmann and J. Hesser at Heidelberg University, P. Müller, J. Wagner
- C. Cremer, IMB Mainz
- D. Heermann, Heidelberg University

Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit

Bundesministerium für Bildung und Forschung

