
Final-State Showers
Initial-State Showers

Matching and Merging
ˇ

Basics of Event Generators II

Leif Lönnblad

Department of Theoretical Physics
Lund University

Terascale Monte Carlo School
DESY 08.04.21

Event Generators II 1 Leif Lönnblad Lund University

Final-State Showers
Initial-State Showers

Matching and Merging
ˇ

Outline of Lectures

◮ Lecture I: Basics of Monte Carlo, the event generator
strategy, matrix elements, LO/NLO, . . .

◮ Lecture II: Parton showers, Sudakov formfactors,
initial/final state, angular ordering, k⊥-factorization, . . .

◮ Lecture III: Underlying events, multiple interactions,
minimum bias, pile-up, hadronization, decays, . . .

Event Generators II 2 Leif Lönnblad Lund University

Final-State Showers
Initial-State Showers

Matching and Merging
ˇ

Outline of Lecture II

Final-State Showers
Angular Ordering
Evolution Variables
The Veto Algorithm

Initial-State Showers
Backwards Evolution
k⊥-Factorization
DGLAPCCFMBFKL

Matching and Merging
Merging with Tree-Level Matrix Elements
Matching with NLO

Parton Shower Generators

Event Generators II 3 Leif Lönnblad Lund University

Final-State Showers
Initial-State Showers

Matching and Merging
ˇ

Angular Ordering
Evolution Variables
The Veto Algorithm

The purpose of parton showers is to generate real exclusive
events on parton level down to a very low (almost
non-perutbative) jet resolution scale µ.

Starting from an initial hard scattering eg. e+e− → qq̄ or
qq̄ → Z 0, we basically need

σ+0 = σ0(1 + C01αs + C02α
2
s + C03α

3
s + . . .)

σ+1 = σ0(C11αs + C12α
2
s + C13α

3
s + . . .)

σ+2 = σ0(C22α
2
s + C23α

3
s + C24α

4
s + . . .)

...

Tree-level generators only gives us inclusive events.

NLO generators only gives us one extra parton.

Event Generators II 4 Leif Lönnblad Lund University

Final-State Showers
Initial-State Showers

Matching and Merging
ˇ

Angular Ordering
Evolution Variables
The Veto Algorithm

The purpose of parton showers is to generate real exclusive
events on parton level down to a very low (almost
non-perutbative) jet resolution scale µ.

Starting from an initial hard scattering eg. e+e− → qq̄ or
qq̄ → Z 0, we basically need

σ+0 = σ0(1 + C01αs + C02α
2
s + C03α

3
s + . . .)

σ+1 = σ0(C11αs + C12α
2
s + C13α

3
s + . . .)

σ+2 = σ0(C22α
2
s + C23α

3
s + C24α

4
s + . . .)

...

Tree-level generators only gives us inclusive events.

NLO generators only gives us one extra parton.

Event Generators II 4 Leif Lönnblad Lund University

Final-State Showers
Initial-State Showers

Matching and Merging
ˇ

Angular Ordering
Evolution Variables
The Veto Algorithm

The purpose of parton showers is to generate real exclusive
events on parton level down to a very low (almost
non-perutbative) jet resolution scale µ.

Starting from an initial hard scattering eg. e+e− → qq̄ or
qq̄ → Z 0, we basically need

σ+0 = σ0(1 + C01αs + C02α
2
s + C03α

3
s + . . .)

σ+1 = σ0(C11αs + C12α
2
s + C13α

3
s + . . .)

σ+2 = σ0(C22α
2
s + C23α

3
s + C24α

4
s + . . .)

...

Tree-level generators only gives us inclusive events.

NLO generators only gives us one extra parton.

Event Generators II 4 Leif Lönnblad Lund University

Final-State Showers
Initial-State Showers

Matching and Merging
ˇ

Angular Ordering
Evolution Variables
The Veto Algorithm

Final-State Showers

The tree-level matrix element for
an n-parton state can be
approximated by a product of
splitting functions corresponding to
a sequence of one-parton
emissions from the zeroth order
state.

e−

e+

_
q

q

Event Generators II 5 Leif Lönnblad Lund University

Final-State Showers
Initial-State Showers

Matching and Merging
ˇ

Angular Ordering
Evolution Variables
The Veto Algorithm

Final-State Showers

The tree-level matrix element for
an n-parton state can be
approximated by a product of
splitting functions corresponding to
a sequence of one-parton
emissions from the zeroth order
state.

e−

e+

_
q

q

e−

e+

_
q

q

1

52

3

4

We can then order the emissions acording to some resolution
scale, ρ, so that ρ1 ≫ ρ2 ≫ ρ3 ≫ . . .

Event Generators II 5 Leif Lönnblad Lund University

Final-State Showers
Initial-State Showers

Matching and Merging
ˇ

Angular Ordering
Evolution Variables
The Veto Algorithm

We have the standard DGLAP splitting kernels

Pq→qg(ρ, z)dρdz =
αs

2π
dz

dρ

ρ
CF

1 + z2

1 − z

Pg→gg(ρ, z)dρdz =
αs

2π
dz

dρ

ρ
NC

(1 − z(1 − z))2

z(1 − z)

Pg→qq̄(ρ, z)dρdz =
αs

2π
dz

dρ

ρ
TR (z2 + (1 − z)2)

where ρ is the squared invariant mass or transverse
momentum, and z is the energy (light-cone momenta) fraction
taken by one of the daugthers.

Event Generators II 6 Leif Lönnblad Lund University

Final-State Showers
Initial-State Showers

Matching and Merging
ˇ

Angular Ordering
Evolution Variables
The Veto Algorithm

We now to make the events exclusive. This is done by saying
that the first emission at some ρ1 is given by the splitting kernel
multiplied by the probability that there has been no emission
above that scale.

In a given interval dρ we have the no-emission probability
(

1 −
∑

bc

∫

dz Pa→bc(z, ρ)

)

dρ

Integrating from ρ1 up to some maximum scale, ρ0 we get

∆(ρ0, ρ1) = exp

(

−
∑

bc

∫ ρ0

ρ1

dρ

∫

dz Pa→bc(z, ρ)

)

Event Generators II 7 Leif Lönnblad Lund University

Final-State Showers
Initial-State Showers

Matching and Merging
ˇ

Angular Ordering
Evolution Variables
The Veto Algorithm

In the same way we get the probability to have the nth emission
at some scale ρn

P(ρn) =
∑

abc

∫

dz Pa→bc(ρn, z) ×

exp

(

−
∑

abc

∫ ρn−1

ρn

dρ′
∫

dz ′ Pa→bc(z
′, ρ′)

)

Event Generators II 8 Leif Lönnblad Lund University

Final-State Showers
Initial-State Showers

Matching and Merging
ˇ

Angular Ordering
Evolution Variables
The Veto Algorithm

Integrating we get schematically

σ+0 = σ0∆S0 = σ0(1 + CPS
01αs + CPS

02α2
s + . . .)

σ+1 = σ0CPS
11αs∆S1 = σ0(C

PS
11αs + CPS

12α2
s + CPS

13α3
s + . . .)

σ+2 = σ0CPS
22α2

s∆S2 = σ0(C
PS
22α2

s + CPS
23α3

s + CPS
24α4

s + . . .)

...

We still need a cutoff, ρcut, and the coefficients CPS
nn diverges as

log2n ρmax/ρcut

but the Sudakovs corresponds to the an approximate
resummation of all virtual terms and makes things finite, and
we can use ρcut ∼ 1 GeV.

Event Generators II 9 Leif Lönnblad Lund University

Final-State Showers
Initial-State Showers

Matching and Merging
ˇ

Angular Ordering
Evolution Variables
The Veto Algorithm

Integrating we get schematically

σ+0 = σ0∆S0 = σ0(1 + CPS
01αs + CPS

02α2
s + . . .)

σ+1 = σ0CPS
11αs∆S1 = σ0(C

PS
11αs + CPS

12α2
s + CPS

13α3
s + . . .)

σ+2 = σ0CPS
22α2

s∆S2 = σ0(C
PS
22α2

s + CPS
23α3

s + CPS
24α4

s + . . .)

...

We still need a cutoff, ρcut, and the coefficients CPS
nn diverges as

log2n ρmax/ρcut

but the Sudakovs corresponds to the an approximate
resummation of all virtual terms and makes things finite, and
we can use ρcut ∼ 1 GeV.

Event Generators II 9 Leif Lönnblad Lund University

Final-State Showers
Initial-State Showers

Matching and Merging
ˇ

Angular Ordering
Evolution Variables
The Veto Algorithm

The divergencies comes from the soft and collinear poles in the
splitting kernels, eg.
∫ ρ0

ρc

dρ

∫

dz Pq→qg(ρ, z) ∼

∫ ρ0

ρc

αsdρ

ρ
ln(ρ0/ρ) ∼ αs ln2(ρ0/ρc)

Parton showers systematically resums all orders of
αn

s ln2n(ρ0/ρc) which is the main part of the higher order
corrections.

Event Generators II 10 Leif Lönnblad Lund University

Final-State Showers
Initial-State Showers

Matching and Merging
ˇ

Angular Ordering
Evolution Variables
The Veto Algorithm

The divergencies comes from the soft and collinear poles in the
splitting kernels, eg.
∫ ρ0

ρc

dρ

∫

dz Pq→qg(ρ, z) ∼

∫ ρ0

ρc

αsdρ

ρ
ln(ρ0/ρ) ∼ αs ln2(ρ0/ρc)

Parton showers systematically resums all orders of
αn

s ln2n(ρ0/ρc) which is the main part of the higher order
corrections.

However if there is no strong ordering, ρ1 ≫ ρ2 ≫ ρ3 ≫ . . ., the
PS approximation breaks down

Parton showers cannot model several hard jets very well.
Especially the correlations between hard jets are poorly
described.

Event Generators II 10 Leif Lönnblad Lund University

Final-State Showers
Initial-State Showers

Matching and Merging
ˇ

Angular Ordering
Evolution Variables
The Veto Algorithm

Angular Ordering

The splitting probabilities means that coherence effects are not
taken into account

+

2

Event Generators II 11 Leif Lönnblad Lund University

Final-State Showers
Initial-State Showers

Matching and Merging
ˇ

Angular Ordering
Evolution Variables
The Veto Algorithm

Angular Ordering

The splitting probabilities means that coherence effects are not
taken into account

+

2

+

22

Most coherence effects can be taken into account by
angular ordering.

Event Generators II 11 Leif Lönnblad Lund University

Final-State Showers
Initial-State Showers

Matching and Merging
ˇ

Angular Ordering
Evolution Variables
The Veto Algorithm

Angular Ordering

The splitting probabilities means that coherence effects are not
taken into account

+

2

+

22

Most coherence effects can be taken into account by
angular ordering.

Some angular correlations can also be taken into account by
adjusting the azimuthal angles after a shower is generated.
(cf. lecture on Wednesday)

Event Generators II 11 Leif Lönnblad Lund University

Final-State Showers
Initial-State Showers

Matching and Merging
ˇ

Angular Ordering
Evolution Variables
The Veto Algorithm

Coherence effects can be included directly, by considering
gluon radiation from colour dipoles between colour-connected
partons.

+

2

=

2

Event Generators II 12 Leif Lönnblad Lund University

Final-State Showers
Initial-State Showers

Matching and Merging
ˇ

Angular Ordering
Evolution Variables
The Veto Algorithm

Coherence effects can be included directly, by considering
gluon radiation from colour dipoles between colour-connected
partons.

+

2

=

2

+

2

=

2

Rather than iterating 1 → 2 parton splitting we iterate 2 → 3
splittings. Each emission from a dipole will create two new
dipoles which can continue radiating.

This was first implemented in the ARIADNE generator.
Recently similar schemes have been implemented in PYTHIA,
SHERPA and VINCIA.

Event Generators II 12 Leif Lönnblad Lund University

Final-State Showers
Initial-State Showers

Matching and Merging
ˇ

Angular Ordering
Evolution Variables
The Veto Algorithm

Evolution Variables

How do we choose the evolution variable, ρ?

The most natural choice is to choose a variable which isolates
both the soft and collinear poles in the splitting kernel. This is
the case for ρ = p2

⊥
as used in eg. ARIADNE.

In old versions of PYTHIA and SHERPA the evolution variable is
the virtuality Q2 which in principle is fine except that αs(p2

⊥
)

may diverge for any given Q2. Also angular ordering needs to
be imposed in separately.

In HERWIG the ordering is in angle, which ensures angular
ordering, but does not isolate the soft pole, and an additional
cutoff is needed.

Event Generators II 13 Leif Lönnblad Lund University

Final-State Showers
Initial-State Showers

Matching and Merging
ˇ

Angular Ordering
Evolution Variables
The Veto Algorithm

ln p⊥

y

Transverse momentum
ρ = p2

⊥

ln p⊥

y

Virtuality

ρ = Q2 ∼
p2
⊥

z(1−z)

ln p⊥

y

Angle
ρ ∼ E2θ2 ∼

p2
⊥

z2(1−z)2

Event Generators II 14 Leif Lönnblad Lund University

Final-State Showers
Initial-State Showers

Matching and Merging
ˇ

Angular Ordering
Evolution Variables
The Veto Algorithm

The Sixth Commandment of Event Generation

Thou shalt always be
independent of Lorentz

frame

Event Generators II 15 Leif Lönnblad Lund University

Final-State Showers
Initial-State Showers

Matching and Merging
ˇ

Angular Ordering
Evolution Variables
The Veto Algorithm

Final-state parton showers did really well at LEP
 1-Thrust

co
rr

. f
ac

.

0.6
0.8

1
1.2
1.4

10
-3

10
-2

10
-1

1

10

 1-Thrust

1/
N

 d
N

/d
(1

-T
)

DELPHI

charged & neutral particles
JT 7.3 PS
JT 7.4 PS
AR 4.06
H 5.8C
JT 7.4 ME

(1-T)

(M
C

-D
at

a)
/D

at
a

-0.1

0

0.1

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
(1-T)

(M
C

-D
at

a)
/D

at
a

-0.1

0

0.1

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

 pt
out

 Thr.

co
rr

. f
ac

.

0.6
0.8

1
1.2
1.4

10
-2

10
-1

1

10

 pt
out

 Thr.

1/
N

 d
N

/d
p tou

t
DELPHI

charged & neutral particles
JT 7.3 PS
JT 7.4 PS
AR 4.06
H 5.8C
JT 7.4 ME

pt
out[GeV]

(M
C

-D
at

a)
/D

at
a

-0.3

-0.2

-0.1

0

0 0.5 1 1.5 2 2.5 3 3.5
pt

out[GeV]

(M
C

-D
at

a)
/D

at
a

-0.3

-0.2

-0.1

0

0 0.5 1 1.5 2 2.5 3 3.5

Event Generators II 16 Leif Lönnblad Lund University

Final-State Showers
Initial-State Showers

Matching and Merging
ˇ

Angular Ordering
Evolution Variables
The Veto Algorithm

How do we generate a parton shower emission?

P(t) = f (t) exp
(

−

∫ tmax

t
P(t ′) dt ′

)

We can do the standard transformation method
∫ tmax

t
dtP(t) = exp

(

−

∫ tmax

t
P(t ′) dt ′

)

=

∫ 1

r
pR(t)dt = 1 − r

So if P has a simple primitive function F we get

t = F−1(ln r)

but P is never simple. . .

Event Generators II 17 Leif Lönnblad Lund University

Final-State Showers
Initial-State Showers

Matching and Merging
ˇ

Angular Ordering
Evolution Variables
The Veto Algorithm

How do we generate a parton shower emission?

P(t) = f (t) exp
(

−

∫ tmax

t
P(t ′) dt ′

)

We can do the standard transformation method
∫ tmax

t
dtP(t) = exp

(

−

∫ tmax

t
P(t ′) dt ′

)

=

∫ 1

r
pR(t)dt = 1 − r

So if P has a simple primitive function F we get

t = F−1(ln r)

but P is never simple. . .

Event Generators II 17 Leif Lönnblad Lund University

Final-State Showers
Initial-State Showers

Matching and Merging
ˇ

Angular Ordering
Evolution Variables
The Veto Algorithm

Assume g is a simple function with a simple primitive function G
such that g(t) ≥ P(t), ∀t . Then we can use the following
algorithm

◮ start with t0 = tmax;
◮ select ti = G−1(G(ti−1) − ln R), i.e. according to g(t), but

with the constraint that ti < ti−1,
◮ compare a (new) R with the ratio P(ti)/g(ti); if

P(ti)/g(ti) ≤ R, then return to point 2 for a new try;
◮ otherwise ti is retained as final answer.

Event Generators II 18 Leif Lönnblad Lund University

Final-State Showers
Initial-State Showers

Matching and Merging
ˇ

Angular Ordering
Evolution Variables
The Veto Algorithm

Consider the various ways in which one can select a specific
scale t . The probability that the first try works, t = t1, i.e. that no
intermediate t values need be rejected, is given by

p0(t) = e−
R tmax

t g(t′) dt′ g(t)
P(t)
g(t)

= P(t)e−
R tmax

t g(t′) dt′

The probability that we have thrown away one intermediate
value t1

p1(t) =

∫ tmax

t
dt1e−

R tmax
t1

g(t′) dt′g(t1)
[

1 −
P(t1)
g(t1)

]

e−
R t1

t g(t′) dt′g(t)
P(t)
g(t)

Event Generators II 19 Leif Lönnblad Lund University

Final-State Showers
Initial-State Showers

Matching and Merging
ˇ

Angular Ordering
Evolution Variables
The Veto Algorithm

p1(t) = p0(t)
∫ tmax

t
dt1 [g(t1) − P(t1)]

Similarly we get

p2(t) = p0(t)
∫ tmax

t
dt1 [g(t1) − P(t1)]

∫ t1

t
dt2 [g(t2) − P(t2)]

= p0(t)
1
2

(

∫ tmax

t
[g(t ′) − P(t ′)] dt ′

)2

ptot(t) =

∞
∑

i=0

pi(t) = p0(t)
∞
∑

i=0

1
i!

(

∫ tmax

t
[g(t ′) − P(t ′)] dt ′

)i

= P(t)e−
R tmax

t g(t′) dt′e
R tmax

t [g(t′)−P(t′)]dt′

= P(t)e−
R tmax

t P(t′) dt′

Event Generators II 20 Leif Lönnblad Lund University

Final-State Showers
Initial-State Showers

Matching and Merging
ˇ

Angular Ordering
Evolution Variables
The Veto Algorithm

Also if several things may happen, P1(t), P2(t) ,P3(t), . . . the
probability of i happening first is

Pi(t) ×
∏

j

e−
R tmax

t Pj (t ′) dt ′

Simply generate a scale for each i according to

Pi(t) × e−
R tmax

t Pi (t ′) dt ′

and pick the process with the largest scale.

Event Generators II 21 Leif Lönnblad Lund University

Final-State Showers
Initial-State Showers

Matching and Merging
ˇ

Backwards Evolution
k⊥-Factorization
DGLAPCCFMBFKL

Initial-State Showers

For incoming hadrons, we need to consider the evolution of the
parton densities. Using collinear factorization and DGLAP
evolution we have (with t = log k2

⊥
/Λ2)

dfb(x , t)
dt

=
∑

a

∫

dx ′

x ′
fa(x ′, t)

αs

2π
Pa→b

(x
x ′

)

We can interpret this as during a small increase dt there is a
probability for parton a with momentum fraction x ′ to become
resolved into parton b at x = zx ′ and another parton c at
x ′ − x = (1 − z)x ′.

Event Generators II 22 Leif Lönnblad Lund University

Final-State Showers
Initial-State Showers

Matching and Merging
ˇ

Backwards Evolution
k⊥-Factorization
DGLAPCCFMBFKL

p

p/p̄

uu

g

W+

d

c s̄

Event Generators II 23 Leif Lönnblad Lund University

Final-State Showers
Initial-State Showers

Matching and Merging
ˇ

Backwards Evolution
k⊥-Factorization
DGLAPCCFMBFKL

In a backward evolution scenario we start out with the hard
sub-process at some scale tmax

σ0 ∝ σ̂ab→X fa(xa, tmax)fb(xb, tmax)

and we get the relative probability for the parton a to be
unresolved into parton c during a decrease in scale dt

dPa =
dfa(xa, t)
fa(xa, t)

= |dt |
∑

c

∫

dx ′

x ′

fc(x ′, t)
fa(xa, t)

αs

2π
Pc→a

(xa

x ′

)

Summing up the cumulative effect of many small changes dt ,
the probability for no radiation exponentiates and we get a
Sudakov

∆Sa(xa, tmax, t) = exp

{

−

∫ tmax

t
dt ′

∑

c

∫

dx ′

x ′

fc(x ′, t ′)
fa(xa, t ′)

αs(t ′)
2π

Pc→a

(xa

x ′

)

}

Event Generators II 24 Leif Lönnblad Lund University

Final-State Showers
Initial-State Showers

Matching and Merging
ˇ

Backwards Evolution
k⊥-Factorization
DGLAPCCFMBFKL

This now gives us the probability for the first backwards
initial-state splitting

dPca =
αs

2π
Pac(z)

fc(xa/z, t)
fa(xa, t)

dt
dz
z

× ∆Sa(xa, tmax, t)

In a hadronic collision we first generate the hard scattering,
then evolve the incoming partons backward to lower scales,
and then alow for a final-state shower from all partons from the
hard scattering and the initial-state shower.

This is like undoing the evolution of the PDFs

Event Generators II 25 Leif Lönnblad Lund University

Final-State Showers
Initial-State Showers

Matching and Merging
ˇ

Backwards Evolution
k⊥-Factorization
DGLAPCCFMBFKL

The small-x problem

DGLAP evolution is not applicable if the hard scale is much
smaller than the total energy and the virtuality of the incoming
partons are not much smaller than the hard scale. (small x)

Collinear factorization =⇒ k⊥-factorization

∫

dxadxbσ̂ab→X fa(xa, Q2)fb(xb, Q2) =⇒

∫

dxadxbdk⊥adk⊥bσ̂⋆
ab→XFa(xa, k⊥a, Q2)Fb(xb, k⊥b, Q2)

F an unintegrated parton density.
σ̂⋆ is the off-shell matrix element

Event Generators II 26 Leif Lönnblad Lund University

Final-State Showers
Initial-State Showers

Matching and Merging
ˇ

Backwards Evolution
k⊥-Factorization
DGLAPCCFMBFKL

proton

P

k0
q1

k1

q2

k2

q3

qn+1

kn

lepton

qγ

In DIS, the cross section is
dominated by events with small
Q2 = −q2

γ and small x .

The available phase space for
emitting partons is not limited by
Q2, but rather by the total hadronic
energy, W 2 ≈ Q2/x .

The 1/z pole in the gluon splitting
function makes it possible to emit
many initial-state gluons even for
small Q2.

We need to take into account
unordered evolution.

Event Generators II 27 Leif Lönnblad Lund University

Final-State Showers
Initial-State Showers

Matching and Merging
ˇ

Backwards Evolution
k⊥-Factorization
DGLAPCCFMBFKL

proton

P

k0
q1

k1

q2

k2

q3

qn+1

kn

lepton

qγ

In DIS, the cross section is
dominated by events with small
Q2 = −q2

γ and small x .

The available phase space for
emitting partons is not limited by
Q2, but rather by the total hadronic
energy, W 2 ≈ Q2/x .

The 1/z pole in the gluon splitting
function makes it possible to emit
many initial-state gluons even for
small Q2.

We need to take into account
unordered evolution.

Forward jets at HERA cannot be reproduced by DGLAP based
initial-state parton showers.

Event Generators II 27 Leif Lönnblad Lund University

Final-State Showers
Initial-State Showers

Matching and Merging
ˇ

Backwards Evolution
k⊥-Factorization
DGLAPCCFMBFKL

ZEUS 1995

ET,Jet [GeV]ET,Jet [GeV]ET,Jet [GeV]ET,Jet [GeV]ET,Jet [GeV]ET,Jet [GeV]ET,Jet [GeV]

dσ
D

et
/d

E
T

,J
et

 [n
b/

G
eV

]

a)

• ZEUS data

 ARIADNE 4.08

- - LEPTO 6.5

... HERWIG 5.9

ET,Jet [GeV]

10
-3

10
-2

10
-1

10 20 30 40 50
xJetxJetxJetxJetxJetxJetxJet

dσ
D

et
/d

x Je
t [

nb
]

b)

xJet

10
-1

1

10

10
-2

10
-1

ηJetηJetηJetηJetηJetηJetηJet

dσ
D

et
/d

η
[n

b]

c)

ηJet

10
-3

10
-2

10
-1

1

1 2 3
E2

T,Jet
 /Q2E2

T,Jet
 /Q2E2

T,Jet
 /Q2E2

T,Jet
 /Q2E2

T,Jet
 /Q2E2

T,Jet
 /Q2E2

T,Jet
 /Q2

dσ
D

et
/d

(E
2

T
,J

et /Q
2)

[n
b]

d)

E2
T,Jet

 /Q2

10
-3

10
-2

10
-1

10
-2

10
-1

1 10

Event Generators II 28 Leif Lönnblad Lund University

Final-State Showers
Initial-State Showers

Matching and Merging
ˇ

Backwards Evolution
k⊥-Factorization
DGLAPCCFMBFKL

y

ln p2
⊥

ln 1/x1 ln 1/x2

Event Generators II 29 Leif Lönnblad Lund University

Final-State Showers
Initial-State Showers

Matching and Merging
ˇ

Backwards Evolution
k⊥-Factorization
DGLAPCCFMBFKL

Let’s look at the unintegrated gluon density, which should be
dominating. Starting from a (non-perturbative) gluon at some x0
we get the contribution

G(x , k2
⊥) =

∑

n

n
∏

i

∫

dq2
⊥i

q2
⊥i

dzi ᾱP̃(zi , q2
⊥i)Θ(zi , q2

⊥i)δ(x−x0Πzi)δ(k2
⊥−k2

⊥n)

ᾱ is a suitably scaled αs

P̃(zi , q2
⊥i) is the splitting function

Θ(zi , q2
⊥i) is some phase space limitation defining which

emissions we want to include in the evolution.

Event Generators II 30 Leif Lönnblad Lund University

Final-State Showers
Initial-State Showers

Matching and Merging
ˇ

Backwards Evolution
k⊥-Factorization
DGLAPCCFMBFKL

For large k⊥ and small x we can use the double leading
logarithmic approximation with P̃(z) ≈ 1/z and
Θ = θ(q⊥i − q⊥i−1)

G(x , k2
⊥) =

∑

n

n
∏

i

∫

dq2
⊥i

q2
⊥i

dxi

xi
θ(q⊥i − q⊥i−1)θ(xi−1 − xi)δ(x−xn)δ(k2

⊥−k2
⊥n)

which can be easily integrated to get the well known DLL result

G ∝ exp(2
√

ᾱ ln k2
⊥

ln 1/x)

Using running coupling ᾱ = α0/ log(q2
⊥

/Λ2) we would instead get

G ∝ exp(2
√

α0 ln ln k2
⊥

ln 1/x)

This corresponds to standard DGLAP evolution

Event Generators II 31 Leif Lönnblad Lund University

Final-State Showers
Initial-State Showers

Matching and Merging
ˇ

Backwards Evolution
k⊥-Factorization
DGLAPCCFMBFKL

In the limit of asymptotically small x and moderate k⊥ we may
use BFKL evolution. Here there is no upper limit on the q⊥ of
the emitted gluons and the splitting function

P̃(z, k2
⊥) = ∆R(z, k2

⊥)/z

corresponds to real gluon emissions from Reggeized gluons,
where the Regge form factor corresponding to a sum over
virtual diagrams:

∆R(z, k2
⊥) = exp

(

−ᾱ

∫ 1

zi

dz
z

∫ k2
⊥i

µ2

dk2
⊥

k2
⊥

)

The integration is a bit more tricky, but is doable and the result
is the well-known strong rise of the gluon

G ∝ x−λ = x−4 ln 2ᾱ

Event Generators II 32 Leif Lönnblad Lund University

Final-State Showers
Initial-State Showers

Matching and Merging
ˇ

Backwards Evolution
k⊥-Factorization
DGLAPCCFMBFKL

The next-to-leading logarithmic corrections to BFKL turns out to
be massive. The main reason for this seems to be related to
the lack of (transverse) momentum conservation when allowing
for unlimited q⊥ in the emissions.

Event Generators II 33 Leif Lönnblad Lund University

Final-State Showers
Initial-State Showers

Matching and Merging
ˇ

Backwards Evolution
k⊥-Factorization
DGLAPCCFMBFKL

The Seventh Commandment of Event Generation

Thou shalt always
conserve energy and

momentum

Event Generators II 34 Leif Lönnblad Lund University

Final-State Showers
Initial-State Showers

Matching and Merging
ˇ

Backwards Evolution
k⊥-Factorization
DGLAPCCFMBFKL

proton

P

k0
q1

k1

q2

k2

q3

qn+1

kn

lepton

qγ

In a parton shower scenario we
typically want to separate between
initial-state emissions which
corresponds to the evolution of the
parton densities, and final-state
emissions which do not.

In CCFM evolution this done by
defining all emissions not
corresponding to a angular ordered
final-state shower to be initial-state
emissions.

Event Generators II 35 Leif Lönnblad Lund University

Final-State Showers
Initial-State Showers

Matching and Merging
ˇ

Backwards Evolution
k⊥-Factorization
DGLAPCCFMBFKL

CCFM

CCFM limits the initial-state emissions to have increasing
opening angles (rapidity). In terms of the rescaled transverse
momentum q̄ = q⊥/(1 − z) we then get the phase space
restriction

Θ = θ(q̄i − zi−1q̄i−1)

Starting from BFKL and resumming all emissions now treated
as final-state will cancel parts of the Regge form factor giving

∆R

zi
−→

∆ne

zi
=

1
zi

exp

(

−ᾱ

∫ 1

zi

dz
z

∫ k2
⊥i dq̄2

q̄2 θ(q̄ − zq̄i)

)

The angular ordering properly takes into account gluon
coherence and also results in less infrared sensitivity.

Event Generators II 36 Leif Lönnblad Lund University

Final-State Showers
Initial-State Showers

Matching and Merging
ˇ

Backwards Evolution
k⊥-Factorization
DGLAPCCFMBFKL

Here we may also include the soft pole in the splitting function
with a corresponding Sudakov form factor to conserve energy

P̃ =
∆ne

z
+

∆S

1 − z

which means that for not so small x we recover the main
features of DGLAP evolution.

CASCADE implements CCFM in a backward evolution algorithm.

Event Generators II 37 Leif Lönnblad Lund University

Final-State Showers
Initial-State Showers

Matching and Merging
ˇ

Backwards Evolution
k⊥-Factorization
DGLAPCCFMBFKL

Linked Dipole Chains

The division between initial- and final-state emissions can be
made in many ways. However it is reasonable to require that
the final-state emissions do not change the basic propagators
in the ladder too much.

In the Linked Dipole Chain (LDC) model the final-state
emissions are coming from the dipoles between the gluons
emitted in the initial-state. A suitable constraint on the initial
state emissions turns out to be

Θ = θ(q⊥i − min(k⊥i−1, k⊥i))

This is a stronger restriction than in CCFM and summing up the
contributions from final-state emissions will give us simply

∆ne/z −→ 1/z

Event Generators II 38 Leif Lönnblad Lund University

Final-State Showers
Initial-State Showers

Matching and Merging
ˇ

Backwards Evolution
k⊥-Factorization
DGLAPCCFMBFKL

In this way, LDC becomes even less infrared sensitive, and the
absence of a form factor makes it easy to include full DGLAP
splitting functions (not only the singular parts) and even include
the evolution of quarks.

Also LDC has been implemented in an event generator, LDCMC.

But we can also learn some qualitative lessons from the LDC
formulation.

Looking at the limit of strongly ordered k⊥, not only increasing
but also decreasing, we find that the phase space restriction in
LDC means that q⊥i ≈ max(k⊥i−1, k⊥i). Also considering
strongly ordered x we get for each emission

ᾱ
dzi

zi

dq2
⊥i

q2
⊥i

≈ ᾱ
dzi

zi

dk2
⊥i

max(k⊥i−1, k⊥i)
= ᾱ

dzi

zi

dk2
⊥i

k2
⊥i

min
(

k⊥i

k⊥i−1
, 1

)

Event Generators II 39 Leif Lönnblad Lund University

Final-State Showers
Initial-State Showers

Matching and Merging
ˇ

Backwards Evolution
k⊥-Factorization
DGLAPCCFMBFKL

Comparing with the DLL approximation above which we can
rewrite in terms of κ = log k2

⊥i/Λ2 and li = log(1/xi):

G(l , κ) ∝
∑

n

n
∏

i

{

ᾱ

∫

κ

dκiθ(κi − κi−1)

∫ l

dliθ(li − li−1)

}

=
∑

n

ᾱn κn

n!

ln

n!

we now want to allow also for unordered κ, but we note that
taking a step down in κ is punished exponentially by
k2
⊥i/k2

⊥i−1 = exp(κi−1 − κi).

Approximating the exponential suppression with a step function
we get an approximate ordering in κ, θ(κi − κi−1 + 1) and we
have

∫ κ n
∏

i

dκiθ(κi − κi−1 + 1) ≈
(κ + n)n

n!

For large κ we recover the DLL result

Event Generators II 40 Leif Lönnblad Lund University

Final-State Showers
Initial-State Showers

Matching and Merging
ˇ

Backwards Evolution
k⊥-Factorization
DGLAPCCFMBFKL

On the other hand if κ is small we get from Sterlings formula

(κ + n)n

n!
≈

nn

n!
≈ en

and

G(l , κ) ∝
∑

n

ᾱnen ln

n!
≈ eᾱel = x−λ

with λ = eᾱ ≈ 2.72ᾱ which is remarkably close to the BFKL
result λ = 4 log 2ᾱ ≈ 2.77ᾱ.

We can also get an estimate of where the transition between
DGLAP and BFKL should occur, and obtain κ ≈ λl

Event Generators II 41 Leif Lönnblad Lund University

Final-State Showers
Initial-State Showers

Matching and Merging
ˇ

Backwards Evolution
k⊥-Factorization
DGLAPCCFMBFKL

We can now also try to include a running coupling which means

ᾱdκ → α0
dκ

κ
= α0du

with u = log κ.

Remembering the approximate phase space constraint
θ(κi − κi−1 + 1) we note that for large κ, one extra unit in κ is
negligible in u and we recover the DLL situation, while for small
κ the restriction basically vanishes and we get a random walk in
κ.

Event Generators II 42 Leif Lönnblad Lund University

Final-State Showers
Initial-State Showers

Matching and Merging
ˇ

Backwards Evolution
k⊥-Factorization
DGLAPCCFMBFKL

We can therefore expect the typical evolution path, going
backwards from the hard scale, to be DGLAP-like until the
virtualities reach smaller values where it becomes BFKL-like.

ln
 k

⊥

y=ln x

ln Q
2

ln 2 GeV

DLGAP
LDC

This can be simulated with a DGLAP shower by adding an
unnaturally large intrinsic k⊥ (needed to describe
p⊥-distributions for prompt photons and W production).

Event Generators II 43 Leif Lönnblad Lund University

Final-State Showers
Initial-State Showers

Matching and Merging
ˇ

Backwards Evolution
k⊥-Factorization
DGLAPCCFMBFKL

The event generators CASCADE and LDCMC give consistent
result.

However, the forward jet rates, a measurement designed to be
impossible to reproduce without unordered evolution, is only
reproduced by CASCADE and LDCMC if non-singular terms are
omitted from the gluon splitting function. Using the full function

Pgg(z) =
1
z

+
1

1 − z
+z(1 − z) − 2

will underestimate forward jet rates by almost a factor 2.

Lately CASCADE does a bit better with specially tuned
unintegrated PDFs.

Event Generators II 44 Leif Lönnblad Lund University

Final-State Showers
Initial-State Showers

Matching and Merging
ˇ

Backwards Evolution
k⊥-Factorization
DGLAPCCFMBFKL

The event generators CASCADE and LDCMC give consistent
result.

However, the forward jet rates, a measurement designed to be
impossible to reproduce without unordered evolution, is only
reproduced by CASCADE and LDCMC if non-singular terms are
omitted from the gluon splitting function. Using the full function

Pgg(z) =
1
z

+
1

1 − z
+z(1 − z) − 2

will underestimate forward jet rates by almost a factor 2.

Lately CASCADE does a bit better with specially tuned
unintegrated PDFs.

The dipole shower in ARIADNE allows for un-ordered evolution
(although not directly related to BFKL/CCFM/LDC) and
reproduces forward jets quite nicely.

Event Generators II 44 Leif Lönnblad Lund University

Initial-State Showersˆ
Matching and Merging

Parton Shower Generators

Merging with Tree-Level Matrix Elements
Matching with NLO

Tree-level matrix element generators are good for a handful
hard, well separated partons, but bad for many soft and
collinear partons.

Parton shower generators are not good for a handful hard, well
separated partons, but good for many soft and collinear
partons.

Why can’t we simply combine the two?

Event Generators II 45 Leif Lönnblad Lund University

Initial-State Showersˆ
Matching and Merging

Parton Shower Generators

Merging with Tree-Level Matrix Elements
Matching with NLO

Tree-level matrix element generators are good for a handful
hard, well separated partons, but bad for many soft and
collinear partons.

Parton shower generators are not good for a handful hard, well
separated partons, but good for many soft and collinear
partons.

Why can’t we simply combine the two?

For one extra parton emission we can usually simply modify the
splitting functions to reproduce the correct matrix element.

Event Generators II 45 Leif Lönnblad Lund University

Initial-State Showersˆ
Matching and Merging

Parton Shower Generators

Merging with Tree-Level Matrix Elements
Matching with NLO

Tree-level matrix element generators are good for a handful
hard, well separated partons, but bad for many soft and
collinear partons.

Parton shower generators are not good for a handful hard, well
separated partons, but good for many soft and collinear
partons.

Why can’t we simply combine the two?

For one extra parton emission we can usually simply modify the
splitting functions to reproduce the correct matrix element.

For more partons we need CKKW.

Event Generators II 45 Leif Lönnblad Lund University

Initial-State Showersˆ
Matching and Merging

Parton Shower Generators

Merging with Tree-Level Matrix Elements
Matching with NLO

Parton Shower

O+0 = σ0∆S0

O+1 = σ0CPS
11αs∆S1

O+2 = σ0CPS
22α2

s∆S2

...

Matrix Element

O+0 = σ0

O+1 = σ0CME
11 αs

O+2 = σ0CME
22 α2

s

...
Comparing the αs expansions the strategy should be obvious.
Generate events with 1, 2, 3, . . . , N extra hard jets according to
tree-level matrix elements using some (large) cutoff. Then
reweight with Sudakov form factors from the parton shower.
Finally add parton shower to get events with more than N
partons and with partons below the ME cutoff.

Event Generators II 46 Leif Lönnblad Lund University

Initial-State Showersˆ
Matching and Merging

Parton Shower Generators

Merging with Tree-Level Matrix Elements
Matching with NLO

To obtain Sudakov form factors we need to have an ordered set
of emission scales. This can be done by applying a jet
clustering algorithm to the parton state generated with the
Matrix Element.

Alternatively we can make a shower reconstruction (answering
the question how would my parton shower have generated this
partonic state?)

The Sudakovs can then be calculated analytically or by making
trial parton shower emissions from intermediate states in the
shower reconstruction, remembering that the Sudakov is a
no-emission probability

Event Generators II 47 Leif Lönnblad Lund University

Initial-State Showersˆ
Matching and Merging

Parton Shower Generators

Merging with Tree-Level Matrix Elements
Matching with NLO

When adding the parton shower we must make sure we do not
double-count and add shower emissions which could also have
been generated by the matrix element. (Fourth commandment)

Also we must not under-count and miss phase space regions
not covered by the matrix element. (Second commandment)

The solution is to do a full parton shower, starting from the
highest possible scale, but to veto emissions which are above
the matrix element cutoff.

Special care must be taken for the highest parton multiplicity
state generated by the matrix element. There we must only
veto emissions which are above the lowest reconstructed scale.

Event Generators II 48 Leif Lönnblad Lund University

Initial-State Showersˆ
Matching and Merging

Parton Shower Generators

Merging with Tree-Level Matrix Elements
Matching with NLO

Parton Shower

O+0 = σ0∆S0

= σ0(1 + CPS
10αs + . . .)

O+1 = σ0CPS
11αs∆S1

NLO Matrix Element

O+0 = σ0(1 + CME
10 αs)

O+1 = σ0CME
11 αs

Two main strategies

◮ MC@NLO: Subtract the approximate PS term from the full
ME, simply add PS

◮ POWHEG: Exponentiate CME
10 αs and add PS below first

emission.

(more on matching and merging on Wednesday)

Event Generators II 49 Leif Lönnblad Lund University

Initial-State Showersˆ
Matching and Merging

Parton Shower Generators

Merging with Tree-Level Matrix Elements
Matching with NLO

The Eighth Commandment of Event Generation

Thou shalt always resum
when NLO corrections are

large

Event Generators II 50 Leif Lönnblad Lund University

Initial-State Showersˆ
Matching and Merging

Parton Shower Generators

Parton Shower Generators

◮ PYTHIA: DGLAP-based k⊥ and Q2 ordering
http://home.thep.lu.se/~torbjorn/Pythia.html

◮ HERWIG: DGLAP-based angle ordering
http://projects.hepforge.org/herwig

◮ SHERPA: DGLAP-based Q2 ordering, CKKW
soon kT-ordered dipoles
http://projects.hepforge.org/sherpa

◮ CASCADE: Initial-state CCFM shower
http://projects.hepforge.org/cascade

◮ ARIADNE/LDC: Dipole shower
(not quite suitable for LHC yet)
http://home.thep.lu.se/~leif/ariadne

◮ . . .

Event Generators II 51 Leif Lönnblad Lund University

http://home.thep.lu.se/~torbjorn/Pythia.html
http://projects.hepforge.org/herwig
http://projects.hepforge.org/sherpa
http://projects.hepforge.org/cascade
http://home.thep.lu.se/~leif/ariadne

Initial-State Showersˆ
Matching and Merging

Parton Shower Generators

Outline of Lectures

◮ Lecture I: Basics of Monte Carlo, the event generator
strategy, matrix elements, LO/NLO, . . .

◮ Lecture II: Parton showers, Sudakov formfactors,
initial/final state, angular ordering, k⊥-factorization, . . .

◮ Lecture III: Underlying events, multiple interactions,
minimum bias, pile-up, hadronization, decays, . . .

Event Generators II 52 Leif Lönnblad Lund University

	Final-State Showers
	Angular Ordering
	Evolution Variables
	The Veto Algorithm

	Initial-State Showers
	Backwards Evolution
	k-Factorization
	DGLAPCCFMBFKL

	Matching and Merging
	Merging with Tree-Level Matrix Elements
	Matching with NLO

	Parton Shower Generators

