The CASCADE MC event generator

H. Jung (DESY)

- What it is about
- Critics of the collinear approach ...
- CASCADE
 - Basic idea
 - applications at the TeVatron
 - applications for LHC
- HowTo run CASCADE
 - topics for the exercises

CASCADE ...

... is a hadron level Monte Carlo event generator for QCD type processes with emphasis on the initial state parton evolution

Collinear ansatz: ME & parton evolution

- use LO matrix elements (on-shell, no transverse momentum)
 - cutoffs are needed to avoid divergencies.....
- apply initial and final state parton showers (PS)
 - need matching of cutoff in ME with parton showers
- apply hadronization
- obtain cross sections fully differential in any observable
- BUT:
 - mainly in LO and a few attempts in NLO: Collins et al, MC@NLO, etc)

Problems in Collinear Approximation

NLO corrections will be very large for these LO processes

H. Jung, CASCADE, Monte Carlo school, 21-24 April 2008, DESY

Doing much better with uPDFs ...

doing kinematics correct at LO, reduces NLO corrections ...

→ NEED uPDFs !!!!

CASCADE - basic idea

DGLAP and uPDF

 standard DGLAP evolution equation PDF as from small to large scale evolved:

 $t_0 \ll t_1 \ll t_2 \ll t_3 \cdots \ll \mu^2$

 in deriving DGLAP splitting functions we assumed:

$$\hat{t}\ll\hat{s}$$

• and also in the small t limit:

 $\hat{t} \sim \frac{-k_{\perp}^2}{1-z}$

 strong ordering: neglect all kinematics of previous branchings...

- implicitly also ordering in x: $x_0 > x_1 > x_2 > x_3$
- at hard scattering, parton have a transverse momentum: uPDF

$$\int d^2k_t x_g \mathcal{A}(x_g, k_t, \bar{q}) = x_g G(x_g, Q^2)$$

CCFM and angular ordering

• Color coherence requires angular ordering instead of p_t ordering ...

 $\bar{q} > z_n q_n, q_n > z_{n-1} q_{n-1}, \dots, q_1 > Q_0$

angular ordering implies:
→ recover DGLAP with q_t ordering at medium and large x
→ no restriction on q_t at small x: q_i > z_{n-1}q_{n-1}

→ CataniCiafaloni Fiorani Marchesini evolution forms a bridge between
 DGLAP and BFKL evolution
 → important for comparison with collinear NLO calculations ...

CASCADE - Catani Fiorani Fiorani Archesini evolution

CASCADE: H.Jung and G.P.Salam, Eur.Phys.J. C19 (2001) 351

Advantage of explicit uPDFs

- DGLAP evolution equations:
- only inclusive predictions
- no information on emitted partons
- CCFM treats explicitly
 - ➔ partons emitted during cascade
 - → color coherence
 - energy momentum conservation
- best to implement in MC generator
- compare evolution and parton shower
- **BUT** need determination of unintegrated parton densities

uPDF fit to inclusive HERA data

- fit parameters of starting μ^{\sim} distribution $xg(x,\mu_0^2) = Nx^{-B_g} \cdot (1-x)^4$
- using F₂ data

(H1 Eur. Phys. J. C21 (2001) 33-61, DESY 00-181) $x < 0.05 \ Q^2 > 5 \ {
m GeV}^2$

- parameters: $\mu_r^2 = p_t^2 + m_{q,Q}^2$ $m_q = 250 \text{ MeV}, m_c = 1.5 \text{ GeV}$
- Fit (only stat+uncorr):

$$\frac{\chi^2}{\text{ndf}} = \frac{111.8}{61} = 1.83$$

→ similar to NLO DGLAP fits (~1.5)

CASCADE MC event generator

- gluon induced processes included
 - ep: $\gamma g^* \to q \bar{q}, \, \gamma^* g^* \to Q \bar{Q}, \, \gamma g^* \to J/\psi g$ at HERA tested well !!!
 - pp: $g^*g^* \to q\bar{q}, \ g^*g^* \to Q\bar{Q}, \ g^*g^* \to h$ HQ at TeVatron tested !!!
- initial state parton shower, backward evolution, according to CCFM
- final state PS
- p-remnant treatment
- Hadronization
- full PYTHIA final state PS & remnant treatment included
 - \rightarrow applicable for $t\bar{t}$ -production

using LHA interface to PYTHIA/HERWIG for - final state PS - p-remnant - hadronization

use CASCADE in ep and pp

CASCADE and coll. NLO calculations

- fit of uPDF to inclusive structure functions /x-sections used to determine normalization
 - → includes "all-orders" !!!!
- off-shell matrix element simulates part of real NLO corrections
 - study of scale dependence
 - → compare to coll. NLO calculations
 - check with benchmark x-sections

uPDFs are THE important ingredient for CASCADE ...

The problem with NLO

The problem with NLO

Bottom at TeVatron

• bottom xsection at CDF

$p(b, y <1) \ 24.95 \ \mu b$	b/GeV)		CDF prel: B - J/PSI
$23.6 \ \mu b$	p _t (r		
$24.9 \pm 0.6 \pm 6.2 \ \mu b$	d α/ d		set AO
$\sigma(b, y < 0.6)$	1		
$BR(B ightarrow J/\psi ightarrow \mu)$			
$7.2 \ nb$			
5.2nb			
$7.2 \ nb$			l
$9.0^{+8.4}_{-6.0}$ nb	-1 10		
$.9.9^{+3.8}_{-3.2}$ nb	10	-	
0.4		-	╘═╪═╛
	f(b, y < 1) $4.95 \ \mu b$ $3.6 \ \mu b$ $4.9 \pm 0.6 \pm 6.2 \ \mu b$ f(b, y < 0.6) $R(B \rightarrow J/\psi \rightarrow \mu)$ $7.2 \ nb$ 5.2nb $7.2 \ nb$ $9.0^{+8.4}_{-6.0} \ nb$ $9.9^{+3.8}_{-3.2} \ nb$	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{c} f(b, y < 1) \\ 4.95 \ \mu b \\ 3.6 \ \mu b \\ 4.9 \pm 0.6 \pm 6.2 \ \mu b \\ \hline (b, y < 0.6) \\ R(B \rightarrow J/\psi \rightarrow \mu) \\ \hline 7.2 \ nb \\ 5.2nb \\ \hline 7.2 \ nb \\ 9.0^{+8.4}_{-6.0} \ nb \\ 9.9^{+3.8}_{-3.2} \ nb \end{array}$

- Remarkable agreement
 CASCADE and MC@NLO
- Good agreement CASCADE and FONLL

-2 10

2

p, (GeV)

10 11 12 13 14 15 16 17

8 9

charm and beauty at the LHC

MNR (massive NLO) - FONLL (matched NLL) - CASCADE (uPDF)

- uPDFs at similar level with NLO+resummed
- uPDFs better than pure NLO

M.Cacciari, H.Jung, K.Peters, A.Dainese

CASCADE: technical intro

- where to get the source code
 - http://projects.hepforge.org/cascade
 - → available also in GENSER, both at CERN and DESY mirror
- easy and fast installation using autotools
 - needs PYTHIA/HERWIG for hadronization
- "still" written in FORTRAN..... BUT
 - → all steering of the program is done via steering file
 - no need for the "normal" user to interact directly with the program code
 - →i.e.: cascade < steer_pp-top</pre>

CASCADE: the steering file

*

•••					
	'PBE1'	1	0	-7000.	! Beam energy
	'KBE1'	1	0	2212	! 2212: proton
	'IRE1'	1	0	1	! 0: beam 1 has no structure
*				! 1: k	peam 1 has structure
	'PBE2'	1	0	7000.	! Beam energy
	'KBE2'	1	0	2212	! 2212: proton
	'IRE2'	1	0	1	! 0: beam 2 has no structure
*				! 1: k	peam 2 has structure
*	+++++++++++++++++++++++++++++++++++++++	++++ Ha:	rd subpro	cess select	
*					
	'IPRO'	1	0	11	! (D=1)
*					! 10: Light quarks
*					! 11: Heavy quarks
*					! 102: g g -> Higgs
*					
	'IHFL'	1	0	6	! (D=4) produced flavour for IPRO=11
*					! 4: charm
*					! 5: bottom
*					! 6: top
*					
	'PTCU'	1	0	1000.	! (D=0) p_t **2 cut for process
*					

CASCADE: the steering file (cont'd)

*	+++++++++++++++++++++++++++++++++++++++	Parton	shower	and	fragme	entation ++++++++++
*						
	'NFRA'	1	0		1	! (D=1) Fragmentation on=1 off=0
*						
	'IFPS'	1	0		3	! (D=3) Parton shower
*						! O: off
*						! 1: initial state PS
*						! 2: final state PS
*						! 3: initial and final state PS
*						
*	'IGLU'	1	0		1001	! (D=1010)Unintegrated gluon density
*						! 1: CCFM old set JS2001
*						! 1001: CCFM J2003 set 1
*						! 1002: CCFM J2003 set 2
*						! 1003: CCFM J2003 set 3
*						! 1010: CCFM set A0
*						! 1011: CCFM set A0+
*						! 1012: CCFM set A0-
*						! 1013: CCFM set A1
*						! 1020: CCFM set B0
*						! 1021: CCFM set B0+
*						! 1022: CCFM set B0-
*						! 1023: CCFM set B1

Exercise - compare to MC@NLO

compare CASCADE results with corresponding plot of MC@NLO

- comparison with DGLAP and CCFM mode
- → CASCADE ~ MC@NLO

Exercise - compare to MC@NLO

compare CASCADE results with corresponding plot of MC@NLO

comparison with CCFM and DGLAP mode

→ CASCADE CCFM ~ MC@NLO ?????? H. Jung, CASCADE, Monte Carlo school, 21-24 April 2008, DESY

Conclusions

- CASCADE has many advantages compared to other Monte Carlo event generators:
 - treats kinematics correct from the beginning
 - ➔ no difference between evolution and parton showering
 - → agrees well with standard NLO calculations, where applicable !!!
 - includes naturally transition to small x via angular ordering in CCFM
- CASCADE for pp
 - \rightarrow applicable for standard high p_t processes:
 - ➔ jets, heavy quarks, Higgs, W/Z (coming soon)

Backup Slides

CASCADE for LHC

- Inclusion of new processes ... matrix element calculations needed ...
- Extension of "CASCADE" collaboration:
 - M. Deak, K. Kutak,
 - J. Bartels, F. Schwennsen,
 - S. Baranov, A. Kotikov,
 - A. Lipatov, N. Zotov

H. Jung, CASCADE, Monte Carlo school, 21-24 April 2008, DESY

New processes
 (calculations done recently)

$$pp \rightarrow W^{\pm} + jets + X$$
$$pp \rightarrow Z^{0} + jets + X$$
$$pp \rightarrow \gamma + jets + X$$

- New processes to come: $pp \rightarrow jets + X$ $pp \rightarrow \gamma + \gamma + X$
- Multiparton interactions according to AGK including diffraction and saturation ... still to come ...

Other features of CASCADE

- various sets of uPDFs included (but only CCFM/KMR with parton shower):
 - CCFM
 - KMR (Kimber, Martin, Ryskin Phys. Rev. D63 (2001) 114027)
 - KMS (Kwiecinski, Martin, Stasto Phys. Rev. D 56 (1997) 3991)
 - saturation model
 - derivative of integrated gluon
 - •
 - Remember: consistent treatment only with uPDF
 - KMR prescription: one additional radiation ... useful for determination of hadronization corrections for NLO calculations
- Features of CCFM uPDFs: variation of renormalization scale
 - using uPDFs accordingly determined
 - smaller uncertainty from theory

The problem with NLO ...

- H1 prel data $5 < Q^2 < 100 \text{ GeV}^2$ $-1 < \eta < 2.5$ $E_T > 5 \text{ GeV}$
- None of the calculations can describe measurements !!!

Benchmarks: beauty at HERA and LHC

from Proceedings of the HERA-LHC workshop hep-ph/0601013

Cross sections at parton level in central region

MNR (massive NLO) - FONLL (matched NLL) - CASCADE (uPDF)

H. Jung, CASCADE, Monte Carlo school, 21-24 April 2008, DESY

Z_0/W production in pp

- calculation now finished
- fully implemented in CASCADE
- allows comparison with collinear calculation, for the first time with W and Z

8888

8888

Prompt photons in pp

 Calculations done by Baranov, Lipatov, Zotov (hep-ph/0708.3560)

implemented in CASCADE

Compare to collinear NLO

result: (hep-ex/0201004)

Including valence quarks

- including qg
 ightarrow qg
- important for forward jets
- need unintegrated valence quarks
- transition to collinear case
- → calculations by M. Deak, K.Kutak
- \rightarrow 1st results presented at DIS08

