# **Merging Matrix Elements and Parton Showers**

[for practitioners]





School of Physics The University of Edinburgh



## Outline

#### improving QCD jet modelling through multi-leg tree-level calculations

- The physics: multi-particle final states at the LHC
- The ingredients: parton shower & matrix element calculations
- The method: combining matrix elements and parton showers
  - merging prescriptions: anatomy and systematics
  - sample applications: DY+jets,  $t\bar{t}$ +jets

#### main objectives for the LHC era

- reveal the mechanism of EWSB [discovery of the Higgs?, alternatives?]
- search for physics beyond the SM: weak scale SUSY, ED, W' & Z', ...

## main objectives for the LHC era

- reveal the mechanism of EWSB [discovery of the Higgs?, alternatives?]
- search for physics beyond the SM: weak scale SUSY, ED, W' & Z', ...

example: Higgs-boson production in weak boson fusion



rapidity gap between two forward/backward tagged jets

signal/background ratio depends on central jet veto

#### background challenge

- multi-jet final states with WBF like kinematics
- V + n-jets, VV + n-jets (QCD & EW),  $t\bar{t} + n$ -jets, Wt + n-jets

## main objectives for the LHC era

- reveal the mechanism of EWSB [discovery of the Higgs?, alternatives?]
- search for physics beyond the SM: weak scale SUSY, ED, W' & Z', ...

#### example: cascade decays of new heavy coloured states



 $\bigcirc$  #-leptons + #-jets +  $E_T$ 

jet properties depend on nature of new physics [energies, flavours, edges]

#### background challenge

- SM(BSM) processes associated with (many) high- $p_T$  jets
- QCD multi-jets, V+jets, VV+jets, VVV+jets,  $t\bar{t}$ +jets

## main objectives for the LHC era

- reveal the mechanism of EWSB [discovery of the Higgs?, alternatives?]
- search for physics beyond the SM: weak scale SUSY, ED, W' & Z', ...

## example: gluino pair production for squeezed SUSY spectra

- mSugra searches:  $m_{\tilde{g}}: m_{\tilde{B}} = 6: 1 \Rightarrow 4$  hard jets plus missing energy
- $\bigcirc$  not looked for nearly degenerated scenarios ( $m_{\tilde{g}} \sim m_{\tilde{B}}$ )
- but, when accompanied by hard IS jet

## signal challenge

- rather light gluinos (process scale not too high)
- consistent modelling of additional hard jet(s)



# **Combining ME and PS**

#### objectives

- first few hardest emissions through tree-level ME [ME pros + PS pros]
- quantum interferences and correlations + universal hadronisation
- avoid double counting of phase-space configurations in PS & ME





# **Combining ME and PS**

## objectives

- first few hardest emissions through tree-level ME [ME pros + PS pros]
- quantum interferences and correlations + universal hadronisation
- avoid double counting of phase-space configurations in PS & ME



#### solution

- split multi-jet phase space in two regimes [ $k_T$ -measure  $Q_{cut}$  or  $\Delta R_{min}\&E_{T,min}$ ]
  - jet seeds produced through tree-level MEs [hard partons]
  - jets evolved down to fragmentation scale by PS
- reweight MEs to get exclusive samples at resolution scale
  - $\Rightarrow$  allows to add samples of different ME jet multiplicities
- reject PS configurations taken into account by higher order ME

## **Combining ME and PS – the idea**

## **Decomposition of the LO total inclusive cross section**

 $\left. \sigma_{\mathrm{X}} \right|_{\mathrm{incl}} = \left. \sigma_{\mathrm{X+0}} \right|_{\mathrm{excl}} \left( Q_{\mathrm{cut}} 
ight) + \left. \sigma_{\mathrm{X+1}} \right|_{\mathrm{excl}} \left( Q_{\mathrm{cut}} 
ight) + ... + \left. \sigma_{\mathrm{X+n_{max}}} \right|_{\mathrm{incl}} \left( Q_{\mathrm{cut}} 
ight)$ 

- $\sigma_{X+i}|_{excl}$  cross section for FS X plus exactly *i* jets at given resolution  $Q_{cut}$
- $\sigma_{X+n_{max}}|_{incl}$  cross section for X plus at least  $n_{max}$  jets at resolution scale
- $\bigcirc$  "hard" jets above  $Q_{cut}$  initiated by ME partons
- parton shower adds substructure to ME jets



Shower adds radiation below the smallest ME "emission scale"

#### merging commandments

- ensure full coverage of phase space without any double counting
- dependence on separation scale should be weak

# **Combining ME and PS – CKKW**

**The CKKW method** [Catani,Krauss,Kuhn,Webber 2001; Krauss 2002]

- $\bullet$  separate emission phase space through a  $k_T$  measure  $Q_{\rm cut}$
- reweight matrix elements by (analytic) pseudo shower history
- veto shower emissions above the separation scale

## **CKKW** pre-requisites

• 
$$k_t$$
 measure:  $Q_{ij}^2 = \min(p_{\perp i}^2, p_{\perp j}^2) \cdot R_{ij}^2 / D^2$  or  $Q_{iB}^2 = p_{\perp i}^2$ 

$$R_{ij}^2 = 2\left[\cosh(\eta_i - \eta_j) - \cos(\phi_i - \phi_j)\right]$$

#### NLL Sudakov form factors

$$\Delta_q(Q^2, Q_0^2) = \exp\left\{-\int_{Q_0^2}^{Q^2} dq^2 \,\Gamma_q(Q^2, q^2)\right\}, \ \Delta_g(Q^2, Q_0^2) = \exp\left\{-\int_{Q_0^2}^{Q^2} dq^2 \left[\Gamma_g(Q^2, q^2) + \Gamma_f(q^2)\right]\right\}$$

$$\Gamma_q = \frac{2C_F}{\pi} \frac{\alpha_{\rm S}(q^2)}{q^2} \left( \ln \frac{Q^2}{q^2} - \frac{3}{4} \right), \ \Gamma_g = \frac{2C_A}{\pi} \frac{\alpha_{\rm S}(q^2)}{q^2} \left( \ln \frac{Q^2}{q^2} - \frac{11}{12} \right), \ \Gamma_f = \frac{N_f}{3\pi} \frac{\alpha_{\rm S}(q^2)}{q^2}$$

Terascale MC school, Desy Hamburg, April 2008 - p. 6

## The CKKW algorithm

[as implemented in Sherpa, using built-in ME generator Amegic]

- evaluate MEs  $X + 0, 1, ..., n_{max}$ -jets at  $k_T$ -resolution  $Q_{cut}$  [regulator, $\mu_F, \mu_R$ ]
- select a jet multiplicity with probability

$$P_n = \frac{\sigma_n}{\sum_{i=0}^{n_{\max}} \sigma_i}$$

- generate final-state momenta  $p_i$  according to the ME
- reweight ME according to a reconstructed pseudo shower history
  - determine jet emission scales  $Q_n, ..., Q_1$  with a  $k_T$  cluster algorithm
  - calculate corresponding (analytical) Sudakov weights
    - $\Delta_{q,g}(Q^2_{\text{cut}},Q^2_{\text{prod}})$  for outgoing partons
    - $\Delta_{q,g}(Q_{\text{cut}}^2, Q_{\text{prod}}^2) / \Delta_{q,g}(Q_{\text{cut}}^2, Q_{\text{dec}}^2)$  for lines between  $Q_{\text{prod}} > Q_{\text{dec}}$
  - recalculate  $\alpha_S$  at each vertex in the tree at the corresponding  $k_T$  scale
- start initial- or final-state parton shower for all partons of the events
  - at scale where it was produced
  - ${\scriptstyle \bullet }$  veto on shower emissions above the scale  ${\it Q}_{\rm cut}$

# **Combining ME and PS – CKKW**



 $\bigcirc$  general implementation for  $e^+e^-$  and hadron colliders in Sherpa

- $\bigcirc$   $Q_{\rm cut}$  dependence cancels to (N)LL accuracy
- a variant, the Lönnblad scheme, implemented for Ariadne

# **Combining ME and PS – MLM**

#### The MLM method [Mangano 2002]

[as implemented for Alpgen, combined with Herwig or Pythia showers]

- evaluate the  $n = 0, ..., n_{max}$ -parton MEs with cone measure  $R_{min}$  &  $E_{T,min}$
- $\alpha_S$  at  $k_T$  scales
- generate unweighted events for each multiplicity
- perform showering by Herwig or Pythia [LHA interface]
- after showers (before hadronisation) run cone finder with  $R_{\text{clus}}$  and  $E_{T,\text{clus}}$
- try to geometrically match ME partons with jets after showering
  - for each ME parton select the jet with minimal  $\Delta R_{
    m j,parton}$
  - if  $\Delta R_{j,parton} < R_{match}$  the parton is "matched" [default  $R_{match}$  =1.5 $R_{clus}$ ]
  - a jet can be matched to a single parton only
  - if all partons are matched, keep the event, else reject it
    - $\Rightarrow$  this defines an inclusive sample,  $n_{\rm jet} \ge n_{\rm max}$
    - $\Rightarrow$  for exclusive sample require in addition  $n_{jet} = n$
- after matching combine exclusive and inclusive samples

# **Combining ME and PS – MLM**



#### variants implemented for MadGraph & Helac/Phegas

## **Common Systematics of Merging Approaches**

## all merging prescriptions have similar systematics

- residual dependence on separation cut(s)  $Q_{cut}$  or  $\Delta R_{min}$ ,  $E_{T,min}$
- variations with the number of ME legs taken into account
- dependencies on the internal jet algorithm [cone vs. K<sub>T</sub>, D parameter]

#### different choices for internal scales

- **•** nodal scales for  $\alpha_S$ -reweighting
- choice of factorization scale [different defaults in the approaches]
- parton shower starting conditions

## Choices for the merging parameter(s) triggered by the analysis

- to get jets from ME:  $Q_{cut} \leq Q_{ana}$  ( $\Delta R_{min} \leq \Delta R_{ana}$ ,  $E_{T,min} \leq E_{T,ana}$ )
- $n_{max}$  should preferably be larger/equal than the LO of your observable

## Sherpa consistency checks: variation of $Q_{cut}$

 $p_{\perp}$  distribution of the  $W^-$  in  $par{p} 
ightarrow e^- \, ar{
u}_e + X @ \sqrt{s} = 1.96 \, {
m TeV}$ 

[Krauss, Schälicke, S., Soff, 2004]



combines different multiplicity final states into fully inclusive sample

## **Sherpa consistency checks: variation of** $n_{max}$

#### The $\Delta \phi$ separation of the two hardest $k_T$ -jets in $pp \rightarrow e^+e^- + X$ @ LHC [Krauss, Schälicke, S., Soff, 2005]



Standard shower accurracy  $\sum_{n=2}^{\infty} \alpha_{\rm S}^n \ln^{2n} Q^2 / Q_0^2$ , uncorrelated emissions merging approach yields  $\alpha_{\rm S}^2 \sum_{n=0}^{\infty} \alpha_{\rm S}^n \ln^{2n} Q^2 / Q_0^2$ , full ME correlations

## **Comparative study of merging algorithms for** *W***+jets**

#### comparing implementations for ME+PS merging [Alwall et al. 2007]

- up-to 4 matrix element jets taken into account [hadron level, UE off]
- analysed for cone jets with  $\Delta R = 0.7(0.4)$ ,  $E_T = 10(20)$  GeV at TeV(LHC)
- attempt to estimate the systematics for each generator
  - residual dependence on merging params,  $Q_{
    m cut}$ ,  $E_{T,
    m clus}$ , ( $\Delta R_{
    m clus}$ ,  $n_{
    m max}$ )
  - scale dependencies:  $\alpha_S(k_{\perp} \text{ vs. } 0.5k_{\perp} \text{ vs. } 2k_{\perp})$ , Sherpa also  $\mu_F$



## multi-jet rate variations @ Tevatron & LHC

# Comparative study of merging algorithms for W+jets

#### jet transverse energies @ LHC [Alpgen as reference in lower panels]



similar pattern for Tevatron & LHC energies: Tevatron studies desirable

# Comparative study of merging algorithms for W+jets

Sherpa's uncertainty band @ LHC



again similar pattern for Tevatron

# **Comparison PS vs. ME+PS: DY at Tevatron**

#### $e^+e^-$ +jets @ Tevatron Runll: jet-multiplicities [DØ Note 5066]

#### Pythia-v6.2 Sherpa data w/stat error data w/stat error Nr. of Events **D0 Runll Preliminary D0 Runll Preliminary** data w/stat & sys error Nr. of Events data w/stat & sys error Sherpa range stat 10<sup>4</sup> **10**4 Pythia range stat Sherpa range stat & sys Pythia range stat & sys 10<sup>3</sup> 10<sup>3</sup> 10<sup>2</sup> 10<sup>2</sup> 10 10 1 1 5 5 0 2 3 4 2 3 Δ **Jet Multiplicity Jet Multiplicity** Data / SHERPA Data / PYTHIA 4 3 4 3 2 2 11 0.2 0.2 5 0 1 2 3 5 6 0 2 3 4 6 4 1 **Jet Multiplicity Jet Multiplicity**

inclusive samples normalised to total number of measured events

pure shower approach seems to underestimate multi-jet contributions

# **Comparison PS vs. ME+PS: DY at Tevatron**

 $e^+e^-$ +jets @ Tevatron Runll:  $p_\perp$  of the third jet [DØ Note 5066]

#### Pythia-v6.2 data w/stat error data w/stat & sys error **D0 Runll Preliminary** Pythia range stat

#### Sherpa



the more hard jets you require the worse gets the leading-log approximation

similar analyses done for Alpgen (MLM) within CDF

## Alpgen + Herwig for $t\bar{t}$ +X: consistency checks

#### inclusive $t\bar{t}$ production @ Tevatron & LHC [Mangano et al. 2006]

- ME generation Tevatron(LHC):  $E_{T,min} = 20(30)$  GeV,  $R_{min} = 0.7(0.7)$
- matching parameters:  $E_{T,clus} = 25(36)$  GeV,  $R_{match} = 1.5 \times 0.7$
- inclusive xsecs: merged  $t\bar{t} + 0, 1$  ( $S_1$ ) vs.  $t\bar{t} + 0, 1, 2, 3$  ( $S_3$ ) hard partons

|                     | Tevatron | LHC |   |           | Tevatron | LHC   |
|---------------------|----------|-----|---|-----------|----------|-------|
| $0_{exc}$           | 3.42     | 217 |   | $0_{exc}$ | 3.42     | 216.6 |
| <b>1</b> <i>inc</i> | 0.78     | 252 |   | $1_{exc}$ | 0.66     | 149.9 |
| total               | 4.20     | 469 |   | $2_{exc}$ | 0.09     | 65.8  |
|                     |          |     | , | $3_{inc}$ | 0.010    | 29.9  |
|                     |          |     |   | total     | 4.18     | 462.2 |

**()** naive leading order results for  $t\bar{t}$ +X Tevatron(LHC): **4.37(471)** pb

## Alpgen + Herwig for $t\bar{t}$ +X: consistency checks

## $p_T^{t\bar{t}}$ and $\Delta \phi^{t\bar{t}}$ distributions @ Tevatron & LHC ( $S_1$ vs. fixed order $\alpha_S^3$ )



Steffen Schumann

Terascale MC school, Desy Hamburg, April 2008 – p. 20

# Alpgen + Herwig for $t\bar{t}$ +X: consistency checks

## $p_T^{tar{t}}$ and $\Delta \phi^{tar{t}}$ distributions @ Tevatron & LHC ( $S_1$ vs. $S_3$ )



# Alpgen + Herwig for $t\bar{t}$ +X: comparison with MC@NLO

## $p_T^{t\bar{t}}$ and $\Delta \phi^{t\bar{t}}$ distributions @ Tevatron ( $S_1$ )



 $\bigcirc$  *K*-factor of 1.36 applied for Alpgen

good agreement for inclusive quantities (both at Tevatron & LHC)

💙 but, ...

# Alpgen + Herwig for $t\bar{t}$ +X: comparison with MC@NLO

#### rapidity distribution of hardest jet @ Tevatron & LHC



 $\bigcirc$  significant difference in shape around  $y_1 \approx 0$ 

# Alpgen + Herwig for $t\bar{t}$ +X: comparison with MC@NLO

#### rapidity distribution of hardest jet @ Tevatron & LHC



 $\bigcirc$  significant difference in shape around  $y_1 \approx 0$ 

fixed order result looks like Alpgen [confirmed by POWHEG,  $t\bar{t}$ +jet @ NLO]

effect of shower dead-cone in MC@NLO [new mass treatment in Herwig++]

# **Summary/Outlook**

## The LHC physics programme requires a detailed understanding of QCD

#### improved theoretical modelling of QCD jets in Monte Carlos

- merging higher-order matrix elements and parton showers
  - matrix elements for final states with many hard partons
  - inclusive samples independent on parton level generation
  - hadronisation, UE for realistic events
- improved theo. predictions for multi-jet events [SM backgrounds, Higgs signals]
- merging techniques can improve BSM analyses [Alwall, Wacker]

#### other directions

- MC at NLO: MC@NLO, POWHEG [Frixione, Webber 2002; Nason, Ridolfi 2006]
- new parton shower formalism(s) [Dinsdale et al.; Krauss, S.; Krauss, Winter 2007]

#### future steps

- towards automatisation of NLO + shower
- MC at NLO + tree-level merging

