Sherpa tutorial Allianz MCschool 2008

Getting started

```
Sherpa version 1.1.0 is already installed and compiled for you under
/afs/desy.de/group/alliance/mcg/public/MCGenerators/sherpa/1.1.0/i586_rhel40
To be able to run Sherpa copy the file sherpa.tar.gz from
/afs/desy.de/group/alliance/mcg/public/mcschool2008/examples/Sherpa
into your home directory, <your_dir>. Now run
tar -zxvf sherpa.tar.gz
and then excute
source ./sherpa_setup
```

such all the relevant paths should be set up. When opening a new shell you will have to run source ./sherpa_setup again.

$t\bar{t}$ production with Sherpa

- In <your_dir> there should reside a directory Sherpa_tt/ containing a bunch of parameter files corresponding to $t\bar{t}$ production at the LHC. Make yourself familiar with those. Identify the enforced decay mode of the produced top-quarks.
- Go back to <your_dir> and open the script file ./sherpa_run. Adapt the command to produce just one event, and specify a file name for the HepMC event output.
- Now execute ./sherpa_run. From the output infer the assumed top mass and width. Sherpa will stop after having produced process libraries that need to be compiled and linked by excuting ./makelibs in <your_dir>/Sherpa_tt.
- After successfull compilation run ./sherpa_run again. The program will evaluate the matrix elements and store the results in <your_dir>/Sherpa_tt/Results_tt_01j. Subsequently one event in native Sherpa output (blobs) is printed on the screen. Try to interpret the format and search for the different occurrences of the top decay products.
- Now generate a sizeable number of events for later analyses. To avoid the screen output of events set OUTPUT=2.
- The inclusive cross section of the process and some event statistics can be found in <your_dir>/Sherpa_tt/Ana_Xsec/Statistics_Observable_FinalState.

Analysing Sherpas HepMC event output

In <your_dir>/Analysis_Sherpa/ you find all the necessary ingredients to perform an analysis of your produced event sample. The actual analysis routine resides in hepmc_sh_analysis.cc. There a reconstruction of the top and anti-top quarks in the events is provided. Using this information generate histograms of the following quantities:

- the p_T and η distribution of the top and the anti-top, respectively
- the p_T distribution of the $t\bar{t}$ system
- the p_T and η distribution of the leptonic top-decay products
- the p_T and η distribution of all stable particles in the event
- the p_T' distribution of the top decay products and the full final state
- the azimuthal angle between the leptonic top decay products
- the events charged multiplicity distribution

Load the produced hemmc_sh_histos.root file in root and plot the histograms.

Add on

Starting from your $t\bar{t}$ Sherpa setup, try to generate Higgs production in WBF, with $h^0 \rightarrow e^+\nu_e\mu^-\bar{\nu}_{\mu}$. Having produced an event sample, modify the analysis routines accordingly and compare the relevant distributions with the $t\bar{t}$ sample.