

Flavor Changing Neutral Currents in Top Production and Decay

Efe Yazgan

Top 2013: 6th International Workshop on Top Quark Physics 18 September 2013 Durbach, Germany

FCNCs

- Transitions that change the flavor of a fermion without changing its charge.
- Forbidden at tree level in the SM
- Suppressed at higher orders due to GIM mechanism.

in BSM: **ℬ(t→**Zq)~10⁻⁹-10⁻³

→ any evidence of FCNC will indicate the existence of new physics.

FCNC

Branching ratios for top FCN decays in the SM, models with Q = 2/3 quark singlets (QS), a general 2HDM, a flavour-conserving (FC) 2HDM, in the MSSM and with R parity violating SUSY.

	SM	\mathbf{QS}	2HDM	FC 2HDM	MSSM	₽ SUSY
$\begin{array}{l} t \rightarrow uZ \\ t \rightarrow u\gamma \\ t \rightarrow ug \\ t \rightarrow uH \end{array}$	$8 \times 10^{-17} \\ 3.7 \times 10^{-16} \\ 3.7 \times 10^{-14} \\ 2 \times 10^{-17} \end{cases}$	$\begin{array}{l} 1.1\times10^{-4}\\ 7.5\times10^{-9}\\ 1.5\times10^{-7}\\ 4.1\times10^{-5} \end{array}$	- - 5.5 × 10 ⁻⁶	_ _ _	2×10^{-6} 2×10^{-6} 8×10^{-5} 10^{-5}	$\begin{array}{c} 3 \times 10^{-5} \\ 1 \times 10^{-6} \\ 2 \times 10^{-4} \\ \sim 10^{-6} \end{array}$
$\begin{array}{l} t \rightarrow cZ \\ t \rightarrow c\gamma \\ t \rightarrow cg \\ t \rightarrow cH \end{array}$	$\begin{array}{c} 1 \times 10^{-14} \\ 4.6 \times 10^{-14} \\ 4.6 \times 10^{-12} \\ 3 \times 10^{-15} \end{array}$	$\begin{array}{c} 1.1 \times 10^{-4} \\ 7.5 \times 10^{-9} \\ 1.5 \times 10^{-7} \\ 4.1 \times 10^{-5} \end{array}$	$ \begin{array}{c} \sim 10^{-7} \\ \sim 10^{-6} \\ \sim 10^{-4} \\ \hline 1.5 \times 10^{-3} \end{array} $	$\sim 10^{-10} \ \sim 10^{-9} \ \sim 10^{-8} \ \sim 10^{-5}$	2×10^{-6} 2×10^{-6} 8×10^{-5} 10^{-5}	$\begin{array}{l} 3\times 10^{-5} \\ 1\times 10^{-6} \\ 2\times 10^{-4} \\ \sim 10^{-6} \end{array}$

Aguilar-Saavedra, ACTA Phys. Pol. B 35 (2004)

In this talk: "model independent" searches using effective models.

Outline

- Search for FCNC in
 - ttbar events
 - t→Zq decays
 - t→Hc decays
 - single top quark events
 - pp→t
 - pp→t+q/g
 - pp→t+Z
 - t-channel cross section
 - same sign top quark production

FCNC in t \rightarrow (Z, γ ,H)q Decays in ttbar Events

	B	BR limits @	95% CL (%	%)
ppbar @ 1.8 TeV		t→Zq	t→qγ	
CDF ¹ (~110/pb) <i>dilepton+4j</i>		33	3.2	
ppbar @ 1.96 TeV				
CDF ² (1.9/fb) <i>dilepton+4j</i>		3.7	x	
D0 ³ (4.1/fb) <i>trileptons</i>		3.2	x	
pp @ 7 TeV				
ATLAS ⁴ (2.1/fb) <i>trileptons</i>		0.73	x	
CMS ⁵ (5/fb) trileptons		0.21	x	
pp @ 8 TeV]	
CMS ⁶ (19.5/fb) trileptons		0.07	х	

1) PRL 80 (1998) 2525 2) PRL 101 (2008) 192002 3) PRL 701 (2011) 313 4) JHEP 90 (2012) 139 5) PLB 718 (2013) 1252 6) CMS-PAS-TOP-12-037

B(t→cH) < 0.83 % @ 7 TeV in H→γγ [ATLAS-CONF-2013-081].

B(t→cH) < 2.7 % @ 7 TeV [Craig et al. arxiv:1207.6794]. re-interpreting a CMS anomalous multi-lepton (≥3 leptons) search [CMS, JHEP 06 (2012)169]. B(t→cH) < 0.31 % @ 8 TeV in H→WW, $\tau\tau$,ZZ [CMS-PAS-SUS-13-002]. ←

FCNC in t \rightarrow Zq Decays in ttbar Events

Assuming NP involves particles with $m > m_{+}$ effective Lagrangian up to dim 5:

Aguilar-Saavedra, ACTA Phys. Pol. B 35 (2004)

$$-\mathcal{L}^{\text{eff}} = \frac{g}{2c_W} X_{qt} \bar{q} \gamma_\mu (x_{qt}^{\text{L}} P_{\text{L}} + x_{qt}^{\text{R}} P_{\text{R}}) t Z^\mu + \frac{g}{2c_W} \kappa_{qt} \bar{q} (\kappa_{qt}^v + \kappa_{qt}^a \gamma_5) \frac{i\sigma_{\mu\nu}q^\nu}{m_t} t Z^\mu + e\lambda_{qt} \bar{q} (\lambda_{qt}^v + \lambda_{qt}^a \gamma_5) \frac{i\sigma_{\mu\nu}q^\nu}{m_t} t A^\mu + g_s \zeta_{qt} \bar{q} (\zeta_{tq}^v + \zeta_{qt}^a \gamma_5) \frac{i\sigma_{\mu\nu}q^\nu}{m_t} T^a q G^{a\mu} + \frac{g}{2\sqrt{2}} g_{qt} \bar{q} (g_{qt}^v + g_{qt}^a \gamma_5) t H + \text{H.c.}, \qquad \text{N.B.: Implementation of each term}$$

might differ for each measurement results not perfectly comparable.

Trilepton final state

- Two isolated opposite charged leptons in a Z mass window.
- Another isolated lepton.
- No 4th lepton.
- Large MET.
- At least two jets (exactly 1 b-jet)

CMS-PAS-TOP-12-037

FCNC in t \rightarrow Zq Decays in ttbar Events

CMS-PAS-TOP-12-037

- Zj and Wb pairing to reconstruct top quarks.
- φ(max) between t(Wb) and t(Zj) by examining all Zj pairings.
- Signal: MadGraph+PYTHIA
- Backgrounds: data-driven.

 Dominant systematic uncertainties: factorization and renormalization scales, PDFs and σ_{ttbar}.

No excess of events over the SM background. $\mathscr{B}(t \rightarrow Zq) > 0.07 \%$ is excluded at the 95 % C.L.

Br(t→Zq)=0.1%

FCNC in t \rightarrow cH($\gamma\gamma$) Decays in ttbar Events

MSSM

 2×10^{-6}

 2×10^{-6}

R SUSY

 3×10^{-5}

 1×10^{-6}

Branching ratios for top FCN decays in the SM, models with Q = 2/3 quark singlets (QS), a general 2HDM, a flavour-conserving (FC) 2HDM, in the MSSM and with R parity violating SUSY.

2HDM

ACTA PHYS. PUI. B 55 (2004	ACTA Phy	ys. Pol.	B 35 ((2004
----------------------------	----------	----------	--------	-------

$\rightarrow ug$ $\rightarrow uH$	$\begin{array}{c} 3.7 \times 10^{-14} \\ 2 \times 10^{-17} \end{array}$	$1.5 imes 10^{-7}$ $4.1 imes 10^{-5}$	$_{5.5 \times 10^{-6}}^{-6}$	_	8×10^{-5} 10^{-5}	$2 imes10^{-4}$ $\sim10^{-6}$
	$\begin{array}{c} 1\times 10^{-14} \\ 4.6\times 10^{-14} \\ 4.6\times 10^{-12} \\ 3\times 10^{-15} \end{array}$	$\begin{array}{c} 1.1\times10^{-4}\\ 7.5\times10^{-9}\\ 1.5\times10^{-7}\\ 4.1\times10^{-5} \end{array}$		$\sim 10^{-10}$ $\sim 10^{-9}$ $\sim 10^{-8}$ $\sim 10^{-5}$	$\begin{array}{c} 2\times 10^{-6} \\ 2\times 10^{-6} \\ 8\times 10^{-5} \\ 10^{-5} \end{array}$	$\begin{array}{c} 3 \times 10^{-5} \\ 1 \times 10^{-6} \\ 2 \times 10^{-4} \\ \sim 10^{-6} \end{array}$

ATLAS-CONF-2013-081

Signal: PROTOS+PYTHIA

SM

 8×10^{-17}

 3.7×10^{-16}

 $t \rightarrow uZ$

t

t

 $\rightarrow u\gamma$

QS

 1.1×10^{-4}

 7.5×10^{-9}

• one top quark in the hadronic or leptonic channel + Higgs($\rightarrow \gamma \gamma$).

FC 2HDM

- backgrounds for non-resonant γγ final state are small after ttbar selection.
- Hadronic channel
 - ≥ 4 jets (≥ 1 b-jet)
 - reject leptons
 - ♦ 156 < m_{vvi} < 191 GeV</p>
 - 130 < m_{iii} < 210 GeV

- Leptonic channel
 - exactly 1 lepton
 - m_T(lep,MET) > 30 GeV
 - ≥ 2 jets (≥ 1 b-jet)
 - ◆ 156 < m_{vvi} < 191 GeV
 - ◆ 135 < m_{iii} < 205 GeV</p>

- Higgs
 - 2 high-p_T: 40 and 30 GeV well identified and isolated photons

FCNC in t \rightarrow cH($\gamma\gamma$) Decays in ttbar Events

SM Higgs bkg: ggF, VBF, WH, ZH, ttH, tH.

Events / 4 GeV

No excess of events over the SM background.

𝔅(t→cH) < 0.83 % @ 95% CL for m_H=126.8 GeV → limit on tcH coupling: λ_{tcH} = 1.91 √𝔅 < 0.17

Dominant systematic uncertainties: photon ID and isolation, JES, b-tagging.

9

FCNC in t→cH Decays Reinterpreted from Inclusive Multilepton Search

 $t\overline{t}$ production followed by

$$t \rightarrow ch, t \rightarrow b(W \rightarrow \ell \nu)$$

$$h \to WW^* \to \ell \nu \ell \nu,$$

$$h \to \tau\tau,$$

$$h \to ZZ^* \to jj\ell\ell, \nu\nu\ell\ell, \ell\ell\ell\ell.$$

All signal regions: = 3 leptons (no hadronic τ), no OSSF pair or an OSSF pair off Z, and a b-tag.

		/	U		
	Higgs Decay Mode		obs	exp	1σ range
	$h \rightarrow WW^*$	(BR = 23.1 %)	1.58 %	1.57 %	(1.02–2.22)%
	h ightarrow au au	(BR = 6.15%)	7.01 %	4.99%	(3.53–7.74)%
	$h \rightarrow ZZ^*$	(BR = 2.89 %)	5.31 %	4.11 %	(2.85–6.45)%
	combined		1.28 %	1.17 %	(0.85–1.73) %
- 1					

$$\sqrt{|\lambda_{tc}^{h}|^{2} + |\lambda_{ct}^{h}|^{2}} < 0.21$$

10 most sensitive signal regions for t \rightarrow ch

OSSF pair	$E_{\rm T}^{\rm miss}$ [GeV]	H_T [GeV]	b-tag	data	background	signal
below Z	0–50	> 200	\checkmark	5	9.4 ± 2.6	12.3 ± 3.2
below Z	50-100	> 200	\checkmark	10	9.3 ± 3.6	12.7 ± 3.4
below Z	50-100	0–200	\checkmark	48	51 ± 25	39.5 ± 9.9
below Z	0–50	0–200	\checkmark	35	43 ± 12	23.9 ± 5.2
n/a	50-100	0–200		29	28 ± 14	21.8 ± 4.6
below Z	50-100	0–200		146	125 ± 29	41 ± 11
n/a	0–50	0–200	\checkmark	30	24 ± 11	16.1 ± 3.8
above Z	0–50	0–200	\checkmark	17	18.5 ± 6.7	10.8 ± 2.7
on Z	50-100	0–200	\checkmark	58	44 ± 13	16.0 ± 3.5
below Z	50-100	> 200		11	11.0 ± 3.8	7.1 ± 2.1

BR(t \rightarrow ch = 1 %) and ordered by sensitivity.

• Complementary to $h \rightarrow \gamma \gamma$

CMS-PAS-SUS-13-002

10

Single Top FCNC Searches

t \rightarrow qg impossible to differentiate from multijets background; look for anomalous top quark production: qg \rightarrow t

ppbar @ 1.96 TeV	ℬ(t→ gu) %	ℬ(t→ gc) %	ℬ(t→ Zu) %	ℬ(t→Zc) %
$CDF^1(2.2/fb) pp \rightarrow t$	0.039	0.57	1) PRL 10	2 (2009) 151801
D0 ² (2.3/fb) $pp \rightarrow t+g/q$	0.02	0.39	2) PLB 69	93 (2010) 81
pp @ 7 TeV			3) PLB 71	.2 (2012) 351 245-TOP-12-021
ATLAS ³ (2.05/fb) $pp \rightarrow t$	0.0057	0.027	5) ATLAS	-CONF-2013-063
CMS ⁴ (4.9/fb) pp→t+Z	0.56	7.12	0.51	11.40
pp @ 8 TeV				
ATLAS ⁵ (14.2/fb) $pp \rightarrow t$	0.0031	0.016		

FCNC in Single Top t+Z Events

Agram, Andrea et al. arxiv:1304.5551v2

assumed in CMS-PAS-TOP-12-021.

Also probed by FCNC ttbar

$$-\mathcal{L}^{\text{eff}} = \frac{g}{2c_W} X_{qt} \bar{q} \gamma_{\mu} (x_{qt}^{\text{L}} P_{\text{L}} + x_{qt}^{\text{R}} P_{\text{R}}) t Z^{\mu} + \frac{g}{2c_W} \kappa_{qt} \bar{q} (\kappa_{qt}^v + \kappa_{qt}^a \gamma_5) \frac{i\sigma_{\mu\nu}q^{\nu}}{m_t} t Z^{\mu} + e\lambda_{qt} \bar{q} (\lambda_{qt}^v + \lambda_{qt}^a \gamma_5) \frac{i\sigma_{\mu\nu}q^{\nu}}{m_t} t A^{\mu} + g_s \zeta_{qt} \bar{q} (\zeta_{tq}^v + \zeta_{qt}^a \gamma_5) \frac{i\sigma_{\mu\nu}q^{\nu}}{m_t} T^a q G^{a\mu} + \frac{g}{2\sqrt{2}} g_{qt} \bar{q} (g_{qt}^v + g_{qt}^a \gamma_5) t H + \text{H.c.}, \qquad (1)$$

FCNC in Single Top t+Z Events

- 3 isolated leptons + 1 b-jet
- Signal: MadGraph+Pythia
- Signal extraction: using kinematic variables and b-tagging info, combined using a Boosted Decision Tree (BDT)
 - BDT shapes: from data for Z+jets, inverting third lepton isolation + low MET.
 - Other shapes: from simulation.
- Main background from fake leptons (Z+jets)
- Other backgrounds : ZZ+jets, ttbar, tZq.

	TeV ⁻¹	TeV⁻¹	
couplings	Expected	Observed	$\mathcal{BR}(t \to gq/Zq)$
κ_{gut}/Λ	0.096	0.096	0.56 %
κ_{gct}/Λ	0.427	0.354	7.12 %
κ_{Zut}/Λ	0.492	0.451	0.51 %
κ_{Zct}/Λ	2.701	2.267	11.40 %

FCNC in Single Top t+g Events

- Top quark + an additional jet.
- Final state ~ SM t-channel single top quark production.
- Dominant background: W+jets.
- Signal background separation by Bayesian Neural Networks (BNN).
- Signal and single top background by SINGLETOP MC.

$$-\mathcal{L}^{\text{eff}} = \frac{g}{2c_W} X_{qt} \bar{q} \gamma_\mu (x_{qt}^{\text{L}} P_{\text{L}} + x_{qt}^{\text{R}} P_{\text{R}}) t Z^\mu + \frac{g}{2c_W} \kappa_{qt} \bar{q} (\kappa_{qt}^v + \kappa_{qt}^a \gamma_5) \frac{i\sigma_{\mu\nu} q^\nu}{m_t} t Z^\mu + e\lambda_{qt} \bar{q} (\lambda_{qt}^v + \lambda_{qt}^a \gamma_5) \frac{i\sigma_{\mu\nu} q^\nu}{m_t} t A^\mu + g_s \zeta_{qt} \bar{q} (\zeta_{tq}^v + \zeta_{qt}^a \gamma_5) \frac{i\sigma_{\mu\nu} q^\nu}{m_t} T^a q G^{a\mu} + \frac{g}{2\sqrt{2}} g_{qt} \bar{q} (g_{qt}^v + g_{qt}^a \gamma_5) t H + \text{H.c.}, \qquad (1)$$

FCNC in Single Top t+g Events

- 54 variables in BNN (a subset of the single-top measurement variables + variables from the previous FCNC analysis).
 - individual object and event kinematics, top reconstruction, jet width, angular correlations.
- Bins ordered by signal/background ratio

Yield [Events/0.02] 00 00 DØ 2.3 fb⁻¹ FCNC tgu (a) DØ 2.3 fb⁻¹ (b) Yield [Events/0.02] 15 FCNC tgc FCNC signals FCNC tau FCNC signals **FCNC tqc** W+iets W+jets normalized normalized to 10 SM tb+tab SM tb+tab to 5 pb. their observed Multijets **Àultijets** 5 limits. 0 0.2 0.4 0.6 0.8 1 Ranked FCNC BNN Output 0.85 0.9 0.95 Ranked FCNC BNN Output 0.08 چ 10.07 ـ 0.08 Dominant uncertainties: jet '1.6<mark>├</mark> (a) DØ 2.3 fb⁻¹ (b) DØ 2.3 fb⁻¹ 95% C.L. κ_{tau}/Λ limits: 95% C.L. κ_{tac}/Λ limits: energy scale and b-tag modeling. で 一 0.06 Expected: 0.016 TeV⁻¹ Expected: 0.066 TeV⁻¹ 0.05 0.04 Observed: 0.013 TeV¹ Observed: 0.057 TeV⁻¹ tgu tgc tgu 0.04 ق 0.03 Cross section 0.20 pb 0.27 pb tgc 0.013 TeV-1 0.057 TeV-1 κ_{tgf}/Λ รั้ 0.02 2.0×10^{-4} 3.9×10^{-3} $\mathcal{B}(t \to fg)$ 0.2 0.01 gõ 0.5 1 1.5 2 2.5 3 3.5 4 20 30 40 50 10 $(\kappa_{tou}/\Lambda)^2 [10^{-4} \text{ TeV}^2]$

 $(\kappa_{tac}/\Lambda)^2 [10^{-4} \text{ TeV}^2]$

FCNC in Single Top ($gq \rightarrow t$) Events

- Main differences of $gq \rightarrow t$ from SM:
 - top quark is produced with almost zero p_T
 → p_T(FCNC) < p_T(SM) → W and b from the top quark are almost back-to-back.
 - p_T(W) > p_T(V+jets) and p_T(diboson) → decay products of the W have small opening angles.
 - Different charge asymmetry.

ATLAS, PLB 712 (2012) 351 ATLAS-CONF-2013-063 [8 TeV]

CDF, PRL 102 (2009) 151801

- Signal: PROTOS (ATLAS, 7 TeV), TOPREX (CDF)
- Signal: $ME_{TOP} \rightarrow A$ new generator for FCNC at approx. NLO (ATLAS, 8 TeV)
- Bayesian Neural Network to discriminate signal and background (W+jets and multijets)
- Binned maximum likelihood fit to the NN output distributions.

$$-\mathcal{L}^{\text{eff}} = \frac{g}{2c_W} X_{qt} \bar{q} \gamma_\mu (x_{qt}^{\text{L}} P_{\text{L}} + x_{qt}^{\text{R}} P_{\text{R}}) t Z^\mu + \frac{g}{2c_W} \kappa_{qt} \bar{q} (\kappa_{qt}^v + \kappa_{qt}^a \gamma_5) \frac{i\sigma_{\mu\nu}q^\nu}{m_t} t Z^\mu + e\lambda_{qt} \bar{q} (\lambda_{qt}^v + \lambda_{qt}^a \gamma_5) \frac{i\sigma_{\mu\nu}q^\nu}{m_t} t A^\mu + \frac{g_s \zeta_{qt} \bar{q} (\zeta_{tq}^v + \zeta_{qt}^a \gamma_5) \frac{i\sigma_{\mu\nu}q^\nu}{m_t} T^a q G^{a\mu}}{m_t} + \frac{g}{2\sqrt{2}} g_{qt} \bar{q} (g_{qt}^v + g_{qt}^a \gamma_5) t H + \text{H.c.}, \qquad (1)$$

FCNC in Single Top ($gq \rightarrow t$) Events

NN output

Single Top t-channel Cross Section and FCNC

dominant systematic uncertainties: multi-jet normalization, W/Z+jets heavy flavor correction, ISR/FSR, ttbar cross-section, b-tagging.

- Same-sign top pair production involving double top flavour violation.
- Sensitive to new heavy resonances
 - e.g. flavour-violating Z' ← a possible explanation for A_{FB}(ttbar) discrepancy in Tevatron
- Effective model independent approach (Aguilar-Saavedra, Nucl. Phys. B843 (2011) 638)

0

0.1

0.2

A_{⊏B}

0.3

0.4

0.6

0.5

C_{RR}

- Same-sign dilepton events + jets (w/ ≥ 1 b-jet)
 - MET > 40 GeV
 - ♦ H_T > 550 GeV
- Signal: PROTOS
- Dominant backgrounds: misidentified leptons, charge misid, ttW+jets

No same-sign top quark production.

ATLAS-CONF-2013-051

	95% C.L. upper limit				
	$\sigma(pp \rightarrow tt)$ [$ C /\Lambda^2$ [TeV ⁻²]			
Chirality configuration	Expected 1σ range	Observed	Observed		
Left-left	0.14-0.28	0.19	0.092		
Left-right	0.15-0.30	0.20	0.271		
Right-right	0.15-0.32	0.21	0.099		

Summary

- No sign of FCNC in ttbar, single top and same sign top quark processes.
 - No FCNC from other processes either (e.g. $B_s^0 \rightarrow \mu^+ \mu^-$).
- Limits getting closer to the predictions from specific models.
- First limits on $t \rightarrow cH$
 - almost at 2HDM prediction.
- At the 13/14 TeV LHC run, ATLAS and CMS expect the limits to be an order of magnitude smaller:
 - ATLAS: Br(t→Zq) >~ 2x10⁻⁴ with 300 fb⁻¹ [ATLAS-PHYS-PUB-2012-001]
 - CMS: Br(t→Zq) >~ 10⁻⁵ with 300 fb⁻¹ [CMS-Note-2013-002]

Tevatron and LHC Public Results

- ATLAS:
 - https://twiki.cern.ch/twiki/bin/view/AtlasPublic/TopPublicResults
 - https://twiki.cern.ch/twiki/bin/view/AtlasPublic/HiggsPublicResults
- CDF
 - http://www-cdf.fnal.gov/physics/new/top/top.html
 - http://www-cdf.fnal.gov/physics/exotic/
- CMS
 - https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsTOP
 - https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsEXO
 - https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSUS
- **D**0
 - <u>http://www-d0.fnal.gov/Run2Physics/top/top_public_web_pages/</u> <u>top_public.htm</u>

BACKUP

Effective Lagrangian up to Dim. 5

Aguilar-Saavedra, ACTA Phys. Pol. B 35 (2004)

Assuming NP involves particles with $m > m_t$.

$$-\mathcal{L}^{\text{eff}} = \frac{g}{2c_W} X_{qt} \,\bar{q} \gamma_\mu (x_{qt}^{\text{L}} P_{\text{L}} + x_{qt}^{\text{R}} P_{\text{R}}) t Z^\mu + \frac{g}{2c_W} \kappa_{qt} \,\bar{q} (\kappa_{qt}^v + \kappa_{qt}^a \gamma_5) \frac{i\sigma_{\mu\nu}q^\nu}{m_t} t Z^\mu + e\lambda_{qt} \,\bar{q} (\lambda_{qt}^v + \lambda_{qt}^a \gamma_5) \frac{i\sigma_{\mu\nu}q^\nu}{m_t} t A^\mu + g_s \zeta_{qt} \,\bar{q} (\zeta_{tq}^v + \zeta_{qt}^a \gamma_5) \frac{i\sigma_{\mu\nu}q^\nu}{m_t} T^a q G^{a\mu} + \frac{g}{2\sqrt{2}} g_{qt} \,\bar{q} (g_{qt}^v + g_{qt}^a \gamma_5) t H + \text{H.c.} \,, \qquad (1)$$

 $q^{\nu} = (p_t - p_q)^{\nu}$: boson momentum

 \overline{q}, t : quark fields

Couplings are constants and normalized to:

 \rightarrow Model-independent framework.

Coefficients can be constrained from direct and indirect measurements.

$$\left|x_{qt}^{L}\right|^{2} + \left|x_{qt}^{R}\right|^{2} = 1, \ \left|\kappa_{qt}^{L}\right|^{2} + \left|\kappa_{qt}^{R}\right|^{2} = 1, \ \dots \ with \ X_{qt}, \kappa_{qt}, \lambda_{qt}, \zeta_{qt}, g_{qt} \in \Re^{+}$$

N.B.: Implementation of each term might differ for each measurement – *the results not perfectly comparable.*

FCNC in t \rightarrow Zq Decays

CMS-PAS-TOP-12-037

Background Estimation

- Derived using data using b-tagging information.
- Events with different number of b-tags (all, 0, and 1) are correlated with the efficiencies and fake rates.

 $\begin{pmatrix} N_{all} \\ N_{0b} \\ N_{1b} \end{pmatrix} = T \begin{pmatrix} N_{VV} \\ N_{FCNC} \\ N_{VV} \end{pmatrix}$ Events with 0 b-jets are dominated by VV processes. Events with 1 b-jet should be consistent with FCNC signal. Events with 2 b-jets dominated by Wttbar, Zttbar, tbZ, ttbar.

Number of events for each category is estimated by inverting the above matrix and counting the number of events in each b-tag category.

FCNC in t \rightarrow cH($\gamma\gamma$) Events

BR to tcH coupling:

ATLAS-CONF-2013-081

$$\Gamma_{t \to cH} = \frac{\alpha}{32 \sin^2 \theta_W} g_{tcH}^2 m_t \left(1 - \frac{m_H^2}{m_t^2} \right)^2$$

$$\Gamma_{t \to bW} = \frac{\alpha}{16 \sin^2 \theta_W} |V_{tb}|^2 \frac{m_t^2}{m_W^2} \left(1 - 3x^4 + 2x^6 \right) \text{ with } x = m_W / m_t$$

Neglecting $\Gamma_{t \to cH}$ in Γ_{tot} : $Br = \frac{g_{tcH}^2}{2} x^2 \left(1 - 3x^4 + 2x^6 \right)^{-1} \left(1 - \frac{m_H^2}{m_t^2} \right)^2 = 0.028 g_{tcH}^2$
 $\rightarrow g_{tcH} = 5.98 \sqrt{Br}$

 λ_{tcH} = 1.91VBr (directly comparable to the ttH coupling given by $\lambda_t = \sqrt{2m_t/v}$)

FCNC in Single Top tZ Events

Variables used in BDT

- reconstructed top-quark mass,
- $\Delta \varphi(l_W b)$, azimuthal angle between the lepton from the W candidate and the b-jet candidate,
- $q|\eta|$, with q the charge of the W candidate,
- p_T of the Z boson candidate,
- η of the *Z* boson candidate,
- selected jet multiplicity,
- selected b-tagged jet multiplicity,
- $\Delta \varphi(Z E_T)$, azimuthal angle between the Z candidate and the direction of the E_T vector,
- CSV discriminator,
- η of the leading jet,
- $\Delta \varphi(l_W Z)$, azimuthal angle between the lepton from the *W* candidate and the *Z* candidate,

FCNC in Single Top ($gq \rightarrow t$) Events

CDF, PRL 102 (2009) 151801 ATLAS, PLB 712 (2012) 351 ATLAS-CONF-2013-063 [8 TeV]

$$\sigma(u, c + g \to t) \times B(t \to Wb)$$

<1.8 pb@95% CL (CDF)
<3.9 pb@95% CL (ATLAS,7 TeV)
<2.5 pb@95% CL (ATLAS,8 TeV)

FCNC in Single Top ($gq \rightarrow t$) Events

$$\begin{split} \kappa_{cgt} &= 0: \\ \kappa_{ugt} \ / \ \Lambda < 0.018 \ TeV^{-1}(CDF) \\ \kappa_{ugt} \ / \ \Lambda < 0.0069 \ TeV^{-1}(ATLAS, \ 7 \ TeV) \\ \kappa_{ugt} \ / \ \Lambda < 0.0051 \ TeV^{-1}(ATLAS, \ 8 \ TeV) \end{split}$$

$$\begin{split} \kappa_{ugt} &= 0: \\ \kappa_{cgt} \ / \ \Lambda < 0.069 \ TeV^{-1}(CDF) \\ \kappa_{cgt} \ / \ \Lambda < 0.016 \ TeV^{-1}(ATLAS, \ 7 \ TeV) \\ \kappa_{cgt} \ / \ \Lambda < 0.011 \ TeV^{-1}(ATLAS, \ 8 \ TeV) \end{split}$$

CDF, PRL 102 (2009) 151801 ATLAS, PLB 712 (2012) 351, ATLAS-CONF-2013-063 [8 TeV]

 $\begin{array}{l} \mathfrak{B}(\underline{t} \rightarrow \underline{c} + \underline{g}) = 0\\ \mathfrak{B}(\underline{t} \rightarrow \underline{u} + \underline{g}) < 3.9 \times 10^{-4} \mbox{ (CDF)}\\ \mathfrak{B}(\underline{t} \rightarrow \underline{u} + \underline{g}) < 5.7 \times 10^{-5} \mbox{ (ATLAS, 7 TeV)}\\ \mathfrak{B}(\underline{t} \rightarrow \underline{u} + \underline{g}) < 3.1 \times 10^{-5} \mbox{ (ATLAS, 8 TeV)}\\ \end{array}$

