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Top quark flavor changing neutral current (FCNC) interactions are highly suppressed in
the Standard Model. Therefore, any large signal of FCNCs will indicate the existence of
new interactions. In this paper, searches for FCNC interactions in top quark production
and decay at the Tevatron and LHC are presented. FCNC searches in t → qZ and t → Hq
decays, and in top quark production in pp → t + j, pp → t + Z are summarized. The
effect of top quark FCNCs on single top quark cross-section, and the searches for same-
sign top quark pair production through FCNCs are also described. None of the searches
yielded positive results and exclusion limits on branching ratios, coupling strengths and
cross-sections are obtained. Future prospects of FCNC searches are also briefly discussed.

1 Introduction

Flavor Changing Neutral Currents (FCNCs) are transitions that change the flavor of a fermion
without changing its charge. FCNCs are forbidden at the tree level in the standard model (SM)
and are suppressed at higher orders due to the GIM mechanism [?]. FCNC interactions occur
only at the level of quantum loop corrections with branching ratios, B(t→ Xq) ∼ 10−17−10−12,
where X = H, γ, Z or g. In models beyond SM, branching ratios up to 10−3 are predicted [?].
Therefore, any evidence of an FCNC process will indicate the existence of new physics. Searches
for FCNCs might be done using specific models (e.g. two Higgs doublet model) or in a model-
independent way. In this proceeding, the analyses summarized depend on model-independent
methods using effective field theory approach. Assuming that the new physics involves particles
with a mass scale larger than the top quark mass, the most general effective Lagrangian with
terms up to dimension 5 is [?]
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where qν = (pt − pq)
ν with pt and pq representing four-momentum of the top quark and b

quark, respectively. The symbols q and t represent the quark fields. The coupling constants are
normalized as |xqtL |2 + |xRqt|2 = 1, |κνqt|2 + |κaqt|2 = 1, etc., with Xqt, κqt, λqt, ζqt, and gqt ∈ R+
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and h.c. represents Hermitian conjugate. For more details, see [?]. Implementation of each term
may be different for some of the measurements presented here, and therefore exclusion limits
are not directly comparable without the necessary replacements for different representations.
The limits on the couplings in this paper are given with the notation in their corresponding
publications.

2 FCNCs in top quark decays in tt events

2.1 t→ Zq decays

The exclusion limits obtained from searches for FCNCs processes in top quark decays in tt
events are summarized in Table ??. Note that there is no published t→ γq result at the LHC
yet. The most precise exclusion limit on the t→ Zq branching ratio is obtained by CMS using
19.7 fb−1 proton-proton collision data at a center-of-mass energy (

√
s) of 8 TeV [?]. The CMS

analysis is made in the tt→Wb+Zq → `νb+ ``q final state. Three lepton events are selected
with the additional requirements of large missing transverse energy, at least two jets among
which exactly one is required to be b-tagged. For signal a MadGraph [?]+Pythia [?] sample is
used and backgrounds are estimated using a data-driven approach. The selected Z boson and
the jet as well as W boson and b-tagged jet are paired to reconstruct the top quarks. After all
selections, the signal region is defined by a 35 GeV Wb and 25 GeV Zj mass window around
the top quark mass. The signal, background and data distributions are shown in Fig. ??.
The signal region contains one event while the expected SM background is 3.1±5.1 events.
Therefore, there is no excess of events over the SM background. The process under investigation
can be represented by the first term of the effective Lagrangian in Eq. ??. A branching ratio,
B(t→ Zq) > 0.07% is excluded at the 95% confidence level (CL). The expected 95% CL upper
limit is 0.11%. Combined with the search at 7 TeV [?], the limit is B(t → Zq) > 0.05%. The
dominant systematic uncertainties in this measurement are factorization and renormalization
scales, parton distribution functions (PDFs) and the tt cross-section.
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Figure 1: Comparison between data and MC distributions of the mZj (left plot), mWb (middle
plot) and the data points on the mZj vs mWb plane (right plot). For the 2D scatter plot
the data points are shown before the top quark mass selection requirements. Top quark mass
requirements are shown as dotted vertical lines in the left and the middle plots and as a dotted
box on the right plot. The expected signal distributions are normalized so that B(t → Zq) =
0.1%.
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√
s Detector Channel B(t→ Zq) B(t→ γq) Reference

(TeV) (integrated luminosity) (%) (%)
1.8 CDF (∼110 pb−1) dilepton 33 3.2 [?]
1.96 CDF (1.9 fb−1) dilepton 3.7 - [?]
1.96 D0 (4.1 fb−1) trilepton 3.2 - [?]
7 ATLAS (2.1 fb−1) trilepton 0.73 - [?]
7 CMS (5 fb−1) trilepton 0.21 - [?]
7 + 8 CMS (5.0 + 19.7 fb−1) trilepton 0.05 - [?]

Table 1: Observed branching ratio exclusion limits for t → Zq and t → γq decays in tt events
at 95% C.L.

2.2 t→ Hq decays

The discovery of the Higgs boson by the ATLAS [?] and CMS [?] collaborations allows us to
search for FCNC interactions occurring through the mediation of the Higgs boson. The ATLAS
collaboration conducted a search for FCNC in the t→ cH decays with H → γγ using 4.7 fb−1

and 20.3 fb−1 data collected at
√
s = 7 and 8 TeV, respectively [?]. The search is made using tt

events for which one of the top quarks decays to cH and the other to bW . Both hadronic and
leptonic decays of the W bosons are considered. Backgrounds for non-resonant γγ final state are
found to be small after tt event selection.
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Figure 2: The diphoton mass spectrum using
the selected events in the hadronic channel.

The signal signature is two high ET well iden-
tified and isolated photons. The hadronic
channel is selected by requiring at least four
jets with at least 1 b-tagged jet and the non-
existence of leptons in the event. The leptonic
channel is defined by exactly one lepton and
high transverse mass defined by the lepton
and EmissT . In addition, the events are re-
quired to fall in certain mγγj and mjjj mass
windows. The backgrounds include SM Higgs
boson backgrounds from gluon fusion, vector
boson fusion (qqH), Higgs-strahlung associ-
ated production (WH, and ZH), associated
Higgs boson production with a tt pair (ttH),
and tH production. Moreover, non-resonant
two-photon production with up to three par-
tons is also considered in the backgrounds. A
maximum likelihood fit performed on the selected data (50 events in the hadronic channel and
1 event in the leptonic channel) yielded a total of 3.7+4.4

−3.7 signal events. The diphoton mass
spectrum using the selected events in the hadronic channel is shown in Figure ??. Assuming
MH = 126.8 GeV, the observed limit on the branching ratio is 0.83% at the 95% C.L. and the
upper bound on the λtcH coupling is 0.17.

Craig et al. [?] obtained a branching ratio limit of 2.7% at 95% C.L. for MH = 125
GeV re-interpreting a CMS anomalous multi-lepton search conducted at

√
s = 7 TeV [?]. At√

s = 8 TeV, CMS searched for t → cH decays from the H → WW ∗ → `ν`ν, H → ττ ,
H → ZZ∗ → jj``, νν``, ```` processes in tt production [?]. The searches have been made
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√
s Detector Decay mode B(t→ cH) Ref.

(TeV) (integrated luminosity) (%)
7+8 ATLAS (4.7+20.3 fb−1) H → γγ 0.83 [?]
8 CMS (19.5 fb−1) H →WW 1.58 [?]
8 CMS (19.5 fb−1) H → ττ 7.01 [?]
8 CMS (19.5 fb−1) H → ZZ 5.31 [?]
8 CMS (19.5 fb−1) H →WW + ττ + ZZ 1.28 [?]

Table 2: Observed branching ratio limits at 95% C.L. for FCNC process in t → cH decays in
tt events.

in exclusive multi-lepton channels defined by lepton charge flavor combinations, EmissT , jet
activity, consistency of the invariant mass of opposite-sign lepton pairs with a Z boson, and
the presence of b-jets and taus. It is found that the most sensitive signal regions are defined
by three leptons, at least one b-tagged jet, no hadronic τ particles, and either no opposite-sign
same-flavor pair or an opposite-sign same-flavor pair off the Z boson mass peak. No excess is
observed over the SM backgrounds. The limits on the branching ratios are displayed in Table
?? for each decay channel. For the CMS branching ratio limits the assumed Higgs boson mass
is MH = 125.5 GeV. The combined branching fraction limit at 95% C.L. obtained by CMS is
1.28% (also shown in Table ??). Note that the exclusion limits were revised after TOP2013
conference. The limit obtained by CMS is complementary to the ATLAS search in the H → γγ
decay channel.

3 FCNCs in top quark production in single top events

It is difficult to distinguish the t→ gq final state from the QCD multi-jets background. Instead,
a much higher sensitivity can be achieved in the searches for the anomalous single top production
via the qg → t process. In the final state, a quark, a gluon, or a Z boson can accompany the top
quark. In the following, we summarize the searches made for anomalous top quark production
in pp → t, pp → t + q/g, and pp → t + Z processes. The branching ratio exclusion limits
obtained from these searches are summarized in Table ??.

√
s Detector B(t→ gu) B(t→ gc) B(t→ Zu) B(t→ Zc) Ref.

(TeV) (integrated luminosity) (%) (%) (%) (%)
1.96 CDF (2.2 fb−1) 0.039 0.57 - - [?]
1.96 D0 (2.3 fb−1) 0.02 0.39 - - [?]
7 ATLAS (2.1 fb−1) 0.0057 0.027 - - [?]
7 CMS (4.9 fb−1) 0.56 7.12 0.51 11.40 [?]
8 ATLAS (14.2 fb−1) 0.0031 0.016 - - [?]

Table 3: Observed branching ratio limits for FCNC process in single top production.

3.1 pp→ t

The main differences of qg → t from the SM processes are that the top quark is produced with
almost zero pT and therefore W and the b-jet are almost back-to-back; the pT of the W boson
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is larger than that of V+jets and diboson and therefore the decay products of the W boson have
small opening angles. Another difference is the different charge asymmetry in the two cases.
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Figure 3: Output distribution of the
neural network in the signal region.
The signal distribution, scaled to a
cross-section of 20 pb, is stacked on
top of the backgrounds.

ATLAS and CDF collaborations made searches for
this process [?, ?, ?]. The signal simulation is
made using PROTOS [?] and TOPREX [?] for
the ATLAS (

√
s =7 TeV) and CDF analysis re-

spectively. For the measurement at
√
s =8 TeV,

ATLAS used a new generator, METOP [?]. This
event generator provides the calculation for the FCNC
process at approximate next-to-leading order level.
Both collaborations used Bayesian Neural Networks
(BNN) to discriminate signal and backgrounds which
are dominated by W + jets and QCD multijets.
Binned maximum likelihood fits to the BNN output
distributions are performed. BNN output distribu-
tions normalized to the binned maximum likelihood fit
results and with the signal scaled to 20 pb obtained
from the ATLAS analysis are shown in Figure ??. The
process that is being searched is represented by the
fourth term of Eq. ??. The best branching ratio ex-
clusion limits are B(t → u + g) < 3.1 × 10−5 and
B(t → c + g) < 1.6 × 10−4, obtained by ATLAS
using 14.2 fb−1 of

√
s =8 TeV data [?]. From this

analysis, the 95% C.L. upper limit on the production
cross-section is determined to be 2.5 pb and the upper limits on the coupling constants are
κugt/Λ < 5.1× 10−3 TeV−1 (assuming κcgt/Λ = 0) and κcgt/Λ < 1.1× 10−2 TeV−1 (assuming
κugt/Λ = 0). For these exclusion limits, the dominant systematic uncertainties are the jet
energy scale and resolution, b-jet tagging efficiency and parton distribution functions (PDFs).

3.2 pp→ t+ q/g
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Figure 4: Background distributions
and data for the FCNC BNN output
at the high discriminant region.

The D0 experiment made a search for the production
of a top quark with an additional jet using 2.3 fb−1

of data [?]. The final state is similar to the t-channel
SM single top quark production. The dominant back-
ground for this process is W + jets. The signal and
background separation is obtained by BNNs. The sig-
nal and single top quark backgrounds are simulated by
SINGLETOP MC [?, ?]. For BNN, 54 variables are
adopted from a subset of the single-top measurement
variables and variables from a previous FCNC analysis
[?]. Discriminating variables are individual object and
event kinematics, top quark reconstruction, jet width,
and angular correlations. Fig. ?? displays the back-
ground distributions (normalized to their observed lim-
its) and data for the combined BNN discriminants. No
FCNC signal is observed and branching ratio limits of
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2.0 × 10−4 for tgu and 3.9 × 10−3 for tgc vertices are obtained. The process is represented
by the fourth term of Eq. ??. Upper limits on couplings are κtgu/Λ < 0.013 TeV−1 and
κtgc/Λ < 0.057 TeV−1 and the upper limits on the cross-sections are 0.20 and 0.27 pb for the
tgu and tgc vertices. Dominant systematic uncertainties are jet energy scale and b-jet tagging
modeling.

3.3 pp→ t+ Z

CMS performed a search for the FCNC process in single top quark production in association
with a Z boson using a 5 fb−1 data sample at

√
s = 7 TeV. In the analysis both gqt and

Zqt vertices are probed simultaneously unlike the standard single top quark FCNC searches.
The model described in [?] is used and the probed vertices are described by the second and
fourth terms of Eq. ??. The Zqt vertex is also probed by the searches in top quark decays as
described in the previous sections. The signal signature is three isolated leptons and a b-tagged
jet. The signal simulation is made using MadGraph+Pythia. The signal is extracted using
kinematic variables and b-jet tagging information combined using a Boosted Decision Tree
(BDT). The main backgrounds are fake leptons from the Z + jets process. Other backgrounds
are ZZ+jets, tt, and tZq. The BDT shapes are taken from data for Z+jets, inverting the third
lepton isolation and low EmissT , and other shapes are taken from simulation. Figure ?? displays
the BDT output distribution for the gut coupling, summed for the four tri-lepton channels.
No FCNC signal is observed and upper limits are derived. The limits on the branching ratios
are listed in Table ??. The observed upper limits on the coupling strengths are κgut/Λ < 0.10
TeV−1, κgct/Λ < 0.35 TeV−1, κzut/Λ < 0.45 TeV−1, and κZct/Λ < 2.27 TeV−1.
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Figure 5: BDT output distribution for the gut coupling (left plot) and Zut (right plot), summed
for the four tri-lepton channels. Total uncertainty is shown as hatched areas. The FCNC signal
is normalized to a cross-section of 0.1 pb.
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3.4 Single Top Quark t-channel cross-section
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Figure 6: Single top production cross-section in
the s- vs. t-channel plane. The sensitivity to
different models is also shown.

FCNC modifies the t-channel production
rate [?]. Figure ?? shows the s- and t-
channel cross-section measurement display-
ing the equal probability contours for the
discriminant with one, two, and three stan-
dard deviations [?]. The figure also shows
the prediction from SM and from differ-
ent specific new physics models that can
modify the s- or t-channel cross-section.
One of the models shown is an FCNC
model that assumes a coupling of ktug/λ =
0.036 [?, ?] modifying the SM t-channel cross-
section. The D0 measurement is consis-
tent with the SM, however to exclude the
FCNC model with the assumed parameters
more data is needed. The dominant sys-
tematic uncertainties are multijet normaliza-
tion, W/Z + jets heavy flavor correction,
ISR/FSR, tt cross-section, and b-jet tag-
ging.

4 Same-sign top quark pair production
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Figure 7: Diagrams for tt (top) ttj (bottom)
production mediated by a Z ′.

The existence of same-sign top quark pair
production may indicate the existence of a
new heavy resonance. The search for same-
sign top quark pair production is motivated
by the fact that the models to explain the
tt forward-backward asymmetry (AFB) ob-
served at the Tevatron [?, ?, ?, ?, ?, ?, ?, ?, ?]
usually involve FCNCs mediated by a new
massive Z ′ boson. The searches for top quark
pair production are made looking for same-
sign dilepton events by CDF [?], CMS [?], and
ATLAS [?, ?] experiments. As shown in Fig-
ure ?? by CMS and ATLAS collaborations,
the non-existence of same-sign top quark pro-
duction indicates that the FCNC interpreta-
tion of the Tevatron AFB is disfavored. The
most stringent limit is obtained by the ATLAS collaboration using 14.3 fb−1 of

√
s = 8 TeV

pp collision data [?]. The signal signature is same-sign dilepton events accompanied by jets in
which at least one of them is a b-jet. Moreover, a missing transverse energy of 40 GeV, and an
HT of 550 GeV are required. The signal simulation is made using the PROTOS event generator.
The dominant backgrounds are misidentified leptons, charge misidentifications, and ttW +jets.
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None of the searches by the different experiments yielded positive results. The 95% C.L. ex-
clusion limits on the cross-section and couplings are obtained by the ATLAS collaboration are
shown in Table ?? for different chirality configurations.

Chirality configuration σ(pp→ tt) [pb] |C|/Λ2 [TeV−2]
Left-left 0.19 0.092

Left-right 0.20 0.271
Right-right 0.21 0.099

Table 4: Observed limits on the positively-charged tt production.
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5 Summary and Prospects

The results of the searches conducted by ATLAS, CDF, CMS, and D0 collaborations are pre-
sented. No signs of FCNCs in the decays of tt, single top quark or same-sign top quark processes
have been observed. The exclusion limits are getting closer to the predictions from specific new
physics models. First limits on the t→ cH process, presented in this proceeding, are almost at
the level of 2HDM predictions. In the

√
s = 14 TeV LHC run, ATLAS and CMS experiments

expect the limits to be an order of magnitude smaller, as shown in Figure ?? in the B(t→ qγ)
vs B(t→ qZ) plane. Using 300 fb−1 of 14 TeV data, ATLAS collaboration expects to exclude
B(t→ qZ) > 2× 10−4 [?] and the CMS experiment expects to exclude B(t→ qZ) > 10−5 [?].
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Figure 9: The observed 95% CL limits on the B(t → qγ) vs. (B(t → qZ)) plane shown with
solid lines for the LEP, ZEUS, H1, D0, CDF, ATLAS and CMS collaborations as of August 10,
2012. The expected sensitivities for ATLAS measurements at 14 TeV with different integrated
luminosities are shown with the dashed lines.
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