
# **Top 2013**

### **Top-Quark Mass at the LHC**

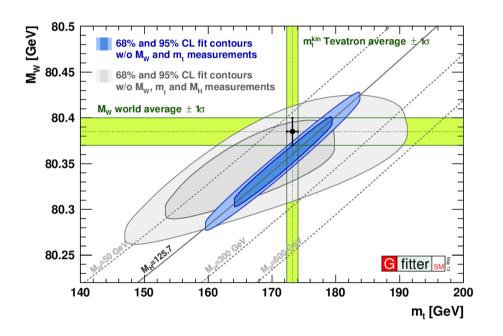


Ian C. Brock University of Bonn



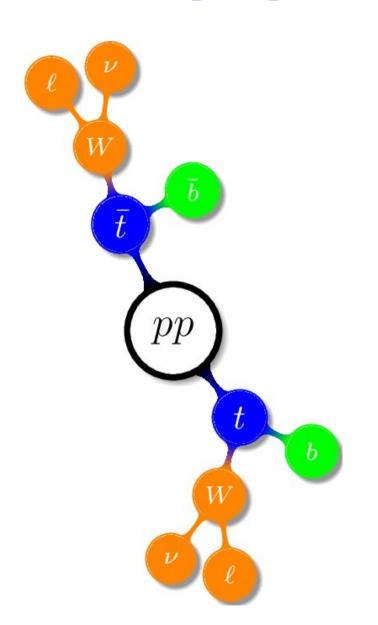
On behalf of the ATLAS and CMS Collaborations

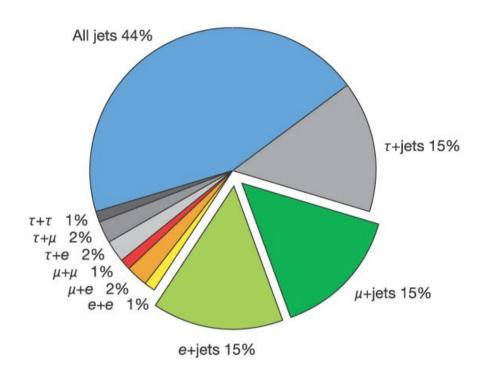
17 September 2013


GEFÖRDERT VOM






# Why more accurate top-quark mass measurements?

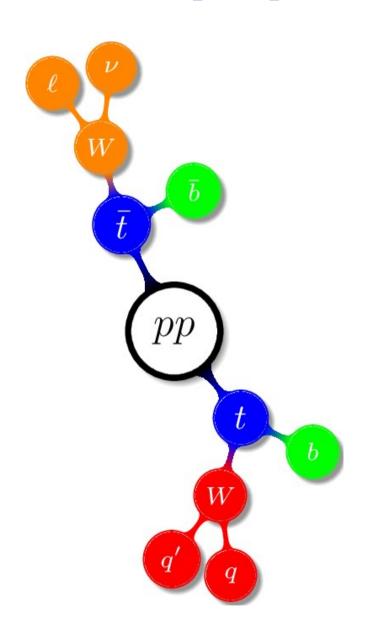

- Fundamental parameter of the Standard Model
- Important for many radiative corrections
- Now that we know the Higgs-boson mass, is the Standard Model still internally consistent?
- Vacuum stability?

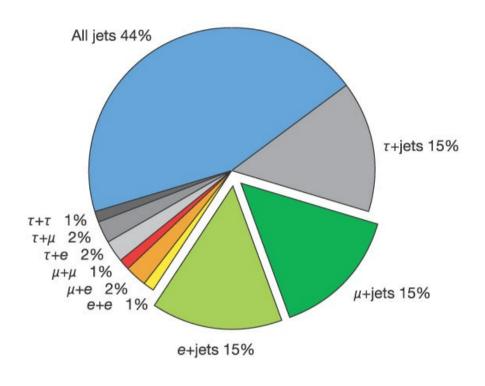




# Top quarks at the LHC





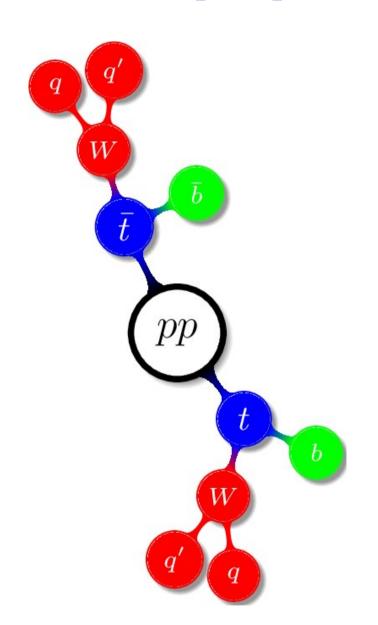


3 topologies used for top-quark mass measurements:

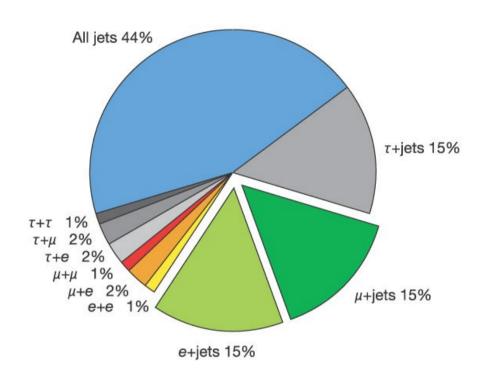
Dilepton (both W decay leptonically)



# Top quarks at the LHC







3 topologies used for top-quark mass measurements:

- Dilepton (both W decay leptonically)
- Lepton + jets (1 W decays leptonically)



# Top quarks at the LHC





3 topologies used for top-quark mass measurements:

- Dilepton (both W decay leptonically)
- Lepton + jets (1 W decays leptonically)
- All-hadronic (both W decay hadronically

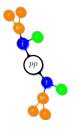


#### **Datasets**

- Most analyses based on 4.7-5.0 fb<sup>-1</sup> data from 2011 at  $\sqrt{s} = 7$  TeV
- Plenty of statistics:
  - 800k tt̄ events produced per experiment (2011 data)
- Reducing and controlling systematic uncertainties is the key
- Getting improved measurements with high pile-up 2012 data will take a while
  - CMS has an updated  $\Delta m_t$  measurement






#### Measurements



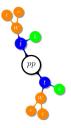
- ATLAS  $m_t$ 
  - Dilepton
    - Template method
  - Lepton+jets
    - 3D template method
  - All-hadronic
    - 1D template method
- ATLAS  $\Delta m_t$

- CMS  $m_t$ 
  - Dilepton
    - Matrix weighting
  - Lepton+jets
    - 2D ideogram method
  - All-hadronic
    - 1D and 2D ideogram method
- CMS  $\Delta m_t$



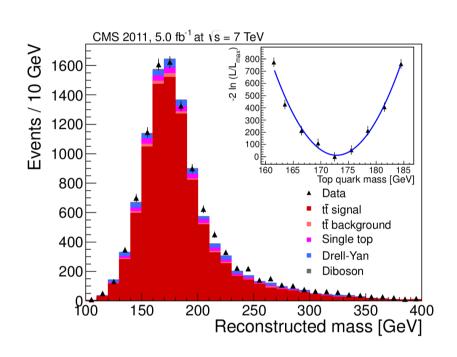


# **CMS** dileptons




- 5.0 fb<sup>-1</sup> 7 TeV data
- Events
  - 2 charged leptons
  - ≥ 2 jets
  - ≥ 1 *b*-tagged jet
  - $E_{T}^{miss}$
- Use analytical matrix weighting technique (AMWT) + likelihood

- AMWT
  - Scan different  $m_t$  hypotheses
    - Solve kinematic equations of tt̄ system
    - Repeat with smeared jets and assign weight
    - Sum weights for each mass hypothesis
  - Reconstructed mass from hypothesis with highest weight

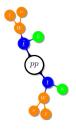

EPJ C 72 (2012) 2202





# **CMS** dileptons

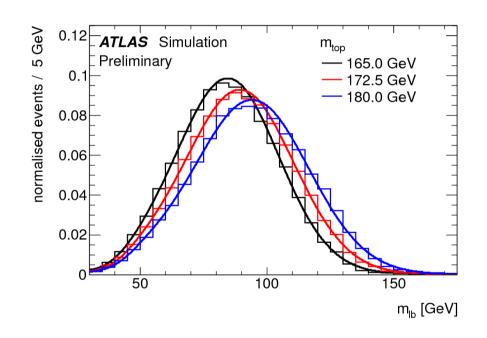





#### Main uncertainties

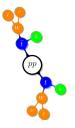
| Description                | Value<br>[GeV] |
|----------------------------|----------------|
| Statistics                 | 0.4            |
| Jet energy scale           | +0.90/-0.97    |
| b-jet energy scale         | +0.76/-0.66    |
| $\mu_R$ and $\mu_F$ scales | 0.55           |
| Underlying event           | 0.26           |
| Total                      | 1.48           |

 $m_t = 172.5 \pm 0.4 \text{ (stat)} \pm 1.5 \text{ (syst)} \text{ GeV}.$ 



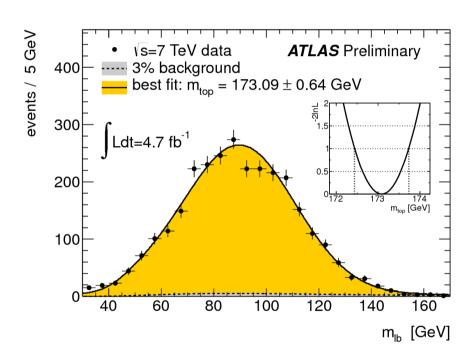



## **ATLAS** dileptons




- 4.7 fb<sup>-1</sup> 7 TeV data
- Events
  - 2 charged leptons
  - 2 b-tagged jets
  - $-E_{T}^{miss}$  (ee/ $\mu\mu$ ) or  $H_{T}$  (e $\mu$ ) cut
- 1D template method
  - $-m_{lb}$  as estimator for  $m_t$
  - Lower  $m_{lb}$  average value used




ATLAS-CONF-2013-077





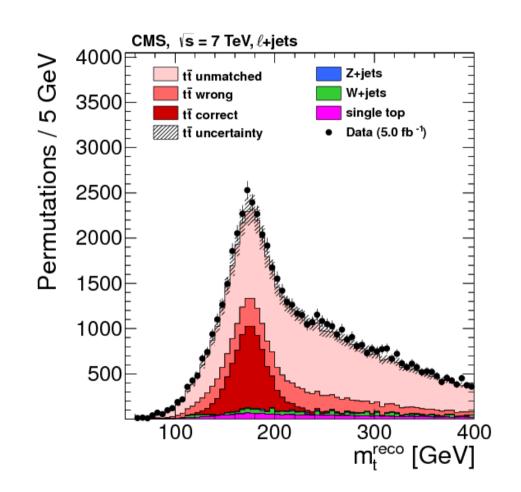
# **ATLAS** dileptons

Almost background free sample (< 3% single top)



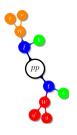
#### Main uncertainties

| Description        | Value<br>[GeV] |
|--------------------|----------------|
| Statistics         | 0.64           |
| Hadronisation      | 0.44           |
| Underlying event   | 0.42           |
| ISR/FSR            | 0.37           |
| Jet energy scale   | 0.89           |
| b-jet energy scale | 0.71           |
| b-tagging          | 0.46           |
| Total              | 1.50           |


 $m_t = 173.09 \pm 0.64 \text{ (stat)} \pm 1.50 \text{ (syst)} \text{ GeV}$ 

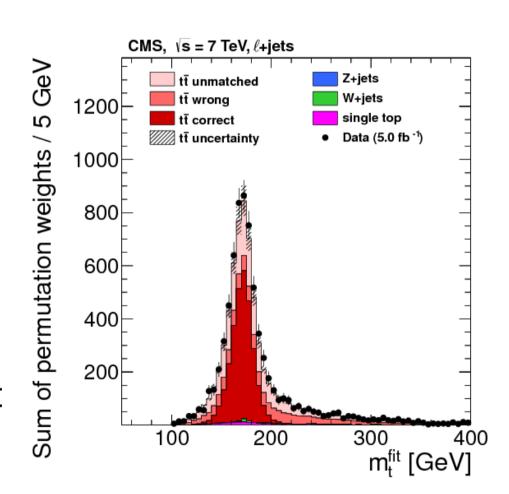






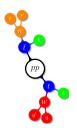

- 5 fb<sup>-1</sup> 7 TeV data
- Events
  - 1 charged lepton
  - ≥ 4 jets
  - ≥ 2 b-tagged jets

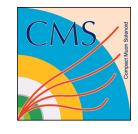



JHEP 12 (2012) 105

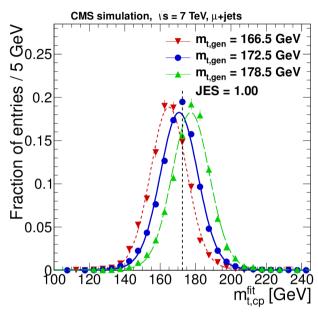


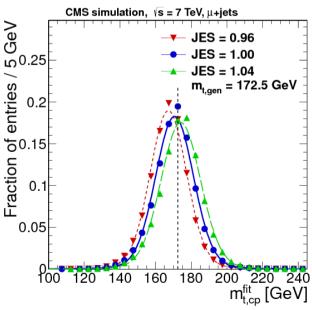




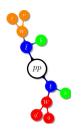


- 5 fb<sup>-1</sup> 7 TeV data
- Events
  - 1 charged lepton
  - ≥ 4 jets
  - ≥ 2 b-tagged jets
- Improve reconstruction purity with kinematic fit
  - Cut on goodness-of-fit and use it as a weight
  - Correct permutation fraction went from 13% to 44%

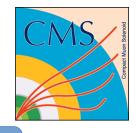


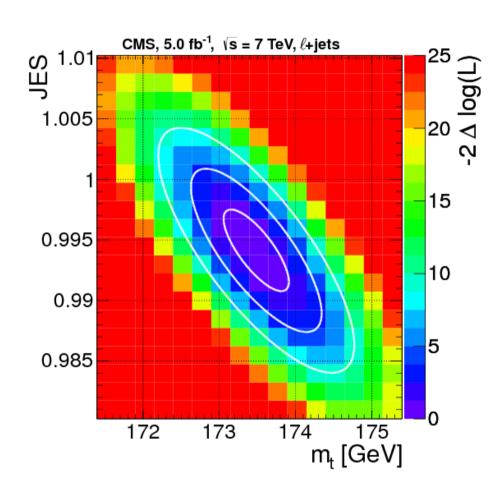

JHEP 12 (2012) 105







- Measure top-quark mass and JES simultaneously
- Ideogram:
  - Go from  $P(\text{event}|m_t, \text{JES})$  to  $P(m_t, \text{JES}|\text{sample})$
  - Weight with quality of event reconstruction
- Use all allowed permutations per event

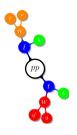






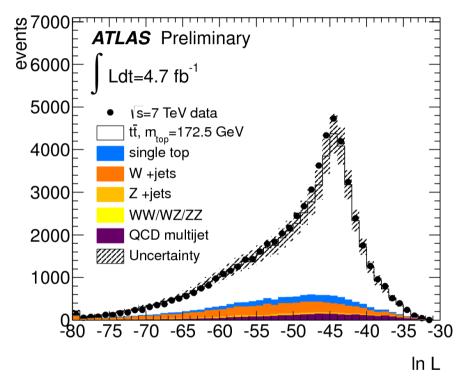




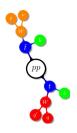

#### Main uncertainties

| Description                | Value<br>[GeV] |
|----------------------------|----------------|
| Statistics                 | 0.43           |
| Jet energy scale           | 0.28           |
| b-JES                      | 0.61           |
| Jet energy resolution      | 0.23           |
| $\mu_R$ and $\mu_F$ scales | 0.24           |
| Colour reconnection        | 0.54           |
| ME-PS matching             | 0.18           |
| Total systematic           | 0.98           |


 $m_t = 173.49 \pm 0.43(\text{stat} + \text{JES}) \pm 0.98(\text{syst})\text{GeV}$  $\text{JES} = 0.994 \pm 0.003(\text{stat}) \pm 0.008(\text{syst})$ 





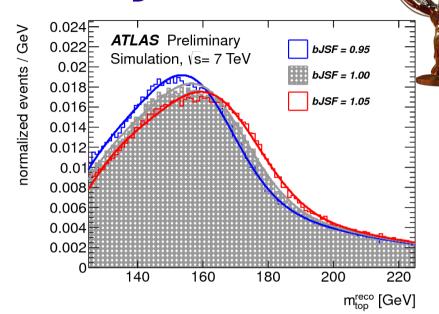


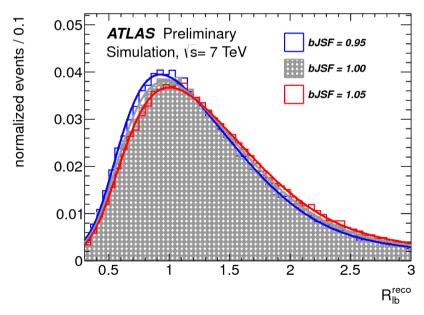

- 4.7 fb<sup>-1</sup> 7 TeV data
- Events
  - 1 charged lepton
  - ≥ 4 jets
  - 1 or 2 b-tagged jets
- Use a kinematic fitter to reconstruct event
  - Correct assignment of jets to partons > 70%



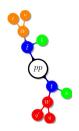
ATLAS-CONF-2013-046

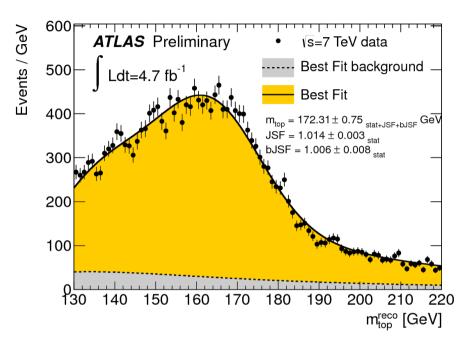




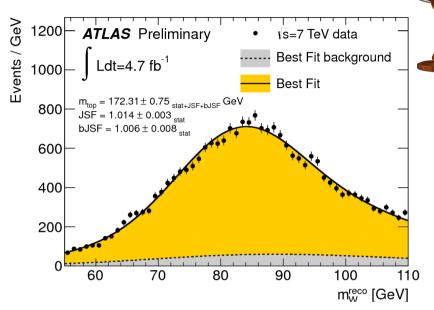


- Use W mass to constrain overall jet energy scale (JSF)
- Use (for 1 b-tag)

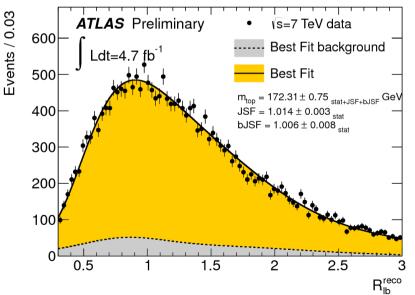
$$R_{lb}^{\text{reco}} = \frac{2p_{\text{T}}^{b\text{-tag}}}{p_{\text{T}}^{\text{light},1} + p_{\text{T}}^{\text{light},2}}$$


to constrain overall ratio of b to light-parton jet energy scale (bJSF)

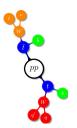

not correlated with JSF








• Parametrise shapes as a function of  $m_t$  and perform unbinned likelihood fit





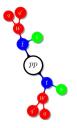






- b-jet energy scale uncertainty down to 0.08 GeV!
- Modelling uncertainties from hadronisation and ISR/FSR substantially decreased
- Jets still largest source of uncertainty
- Modelling uncertainties are also significant
- Work ongoing to reduce b-tagging uncertainty

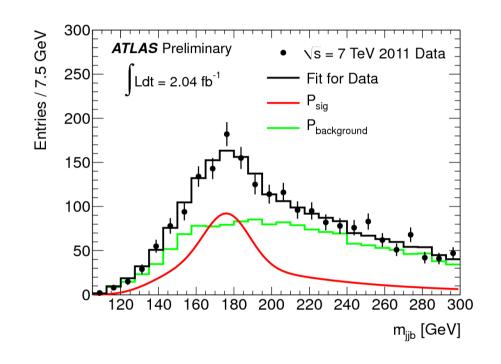
#### Main uncertainties


| Description         | Value<br>[GeV] |
|---------------------|----------------|
| Statistics          | 0.23           |
| JSF (stat)          | 0.27           |
| bJSF (stat)         | 0.67           |
| Hadronisation       | 0.27           |
| Colour reconnection | 0.32           |
| ISR/FSR             | 0.45           |
| Jet energy scale    | 0.79           |
| b-tagging           | 0.81           |
| Total systematic    | 1.35           |

$$m_t = 172.31 \pm 0.75(\text{stat} + \text{JSF} + \text{bJSF}) \pm 1.35(\text{syst})\text{GeV}$$

$$JSF = 1.014 \pm 0.003(stat) \pm 0.021(syst)$$

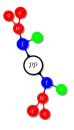
$$bJSF = 1.006 \pm 0.008(stat) \pm 0.020(syst)$$



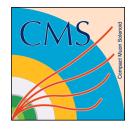



### **ATLAS all-hadronic**

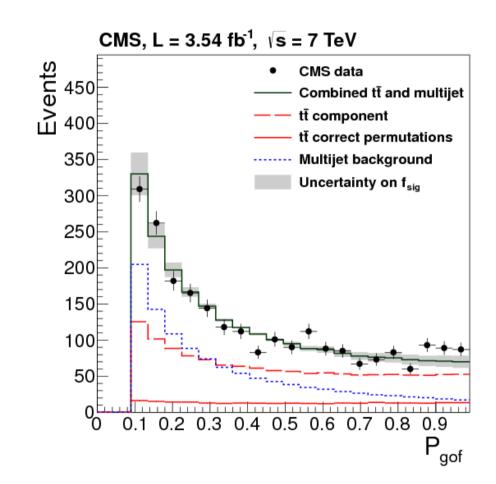



- 2.04 fb<sup>-1</sup> 2011 data
- Events
  - ≥ 6 jets
  - 2 b-tagged jets
- χ² fit for jet to parton assignment
- Use event mixing to estimate multijet background
- 1D template fit  $m_{jjb}$



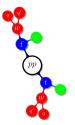

 $m_{t} = 174.9 \pm 2.1(\text{stat}) \pm 3.8(\text{syst}) \text{ GeV}$ 

ATLAS-CONF-2012-030

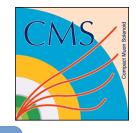





### **CMS** all-hadronic




- 3.54 fb<sup>-1</sup> 7 TeV data
- Events:
  - ≥ 6 jets
  - ≥ 2 *b*-tagged jets
- Use event mixing to estimate multijet background
- Improve reconstruction purity with kinematic fit
  - Cut on goodness-of-fit and use it as a weight
  - Signal fraction 51%



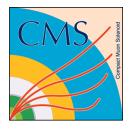

CMS-TOP-11-017 arXiv:1307.4617

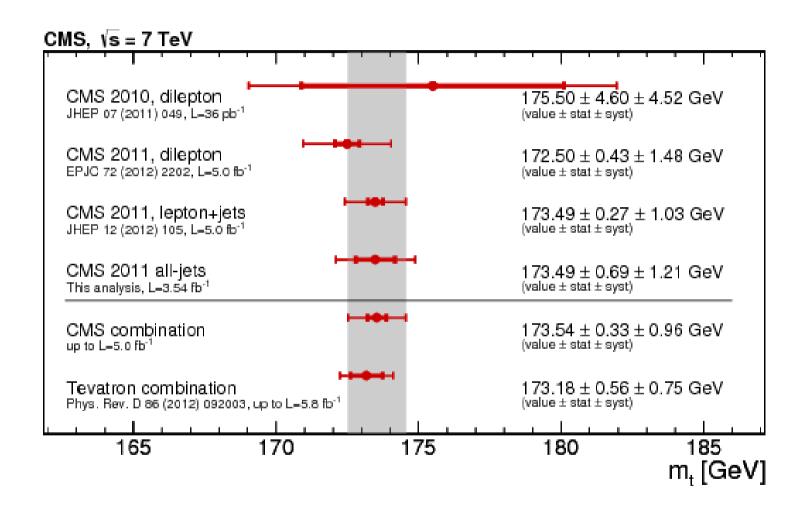




### **CMS** all-hadronic

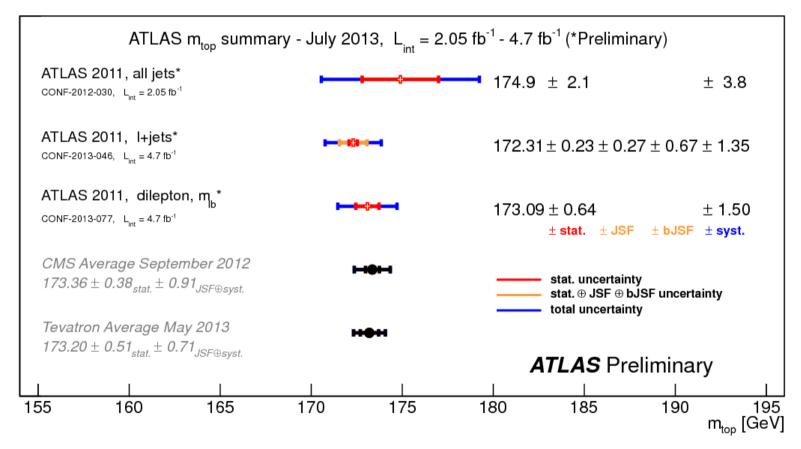


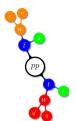




#### Main uncertainties (1D)

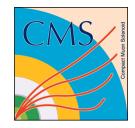
| Description                    | Value |
|--------------------------------|-------|
|                                | [GeV] |
| Statistics                     | 0.69  |
| Jet energy scale               | 0.97  |
| b-JES                          | 0.49  |
| Trigger                        | 0.24  |
| $\mu_{R}$ and $\mu_{F}$ scales | 0.22  |
| Colour reconnection            | 0.15  |
| ME-PS matching                 | 0.24  |
| Underlying event               | 0.20  |
| <b>Total systematic</b>        | 1.21  |

$$m_t = 173.49 \pm 0.69(\text{stat}) \pm 1.21(\text{syst})\text{GeV 1D}$$
  
 $m_t = 174.28 \pm 1.00(\text{stat} + \text{JES}) \pm 1.23(\text{syst})\text{GeV 2D}$   
 $\text{JES} = 0.991 \pm 0.008(\text{stat}) \pm 0.013(\text{syst})$ 

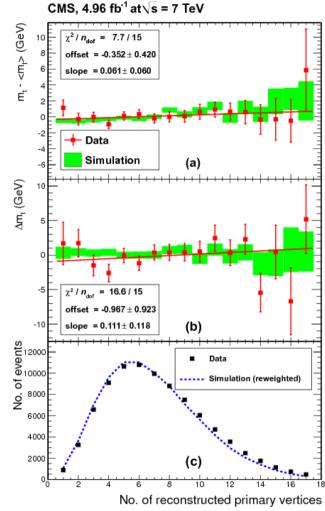

### **CMS** combination







# **ATLAS** summary







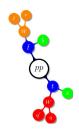

# $\Delta m_{\star}$ from CMS



- 5.0 fb<sup>-1</sup> 7 TeV data
   18.9 fb<sup>-1</sup> 8 TeV data
- Events:
  - 1 charged lepton
  - ≥ 4 jets
- Ideogram method to measure  $m_t$  and  $m_{\bar{t}}$  using  $\ell^+$  jets and  $\ell^-$ +jets events
- Calibrate using pseudo-experiments



(2012)


$$\Delta m_t = -0.44 \pm 0.46 \text{(stat)} \pm 0.27 \text{(syst)} \text{GeV}$$
 (2011)

$$\Delta m_t = -0.27 \pm 0.20(\text{stat}) \pm 0.12(\text{syst})\text{GeV}$$

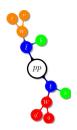
JHEP 06 (2012) 109

CMS-PAS-TOP-12-031



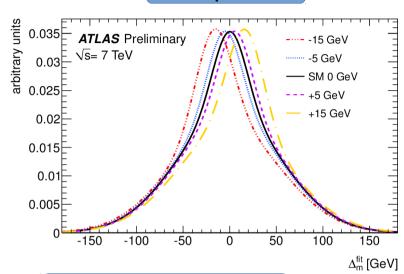


# $\Delta m_{t}$ from ATLAS

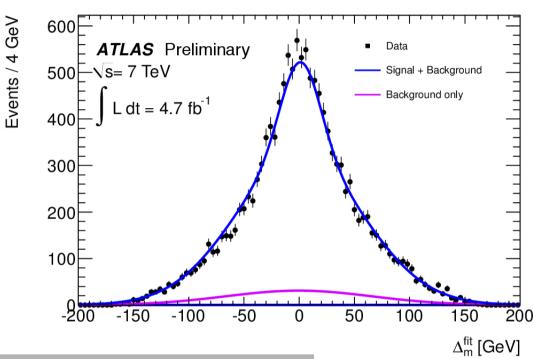

- 4.7 fb<sup>-1</sup> 7 TeV data
- Events:
  - 1 charged lepton
  - ≥ 4 jets
  - ≥ 2 *b*-tagged jets
  - $E_{T}^{miss}$
- PYTHIA MC samples with  $\Delta m_{_{t}} \neq 0$
- Checks and pseudoexperiments use MC@NLO
- PYTHIA vs. EVTGEN for b/b decay uncertainties

- Kinematic  $\chi^2$  fitter used to determine t and  $\bar{t}$  masses from leptons, jets and  $E_{\tau}^{\text{miss}}$
- Average  $m_t$  fixed,  $\Delta m_t$  can vary
- $\Delta m^{\text{fit}} = q_{\ell} (m_{b\ell\nu} m_{bjj})^{\text{fit}}$
- χ² < 10 to select good combinations and reduce background

NEW


ATLAS-CONF-2012-006






# $\Delta m_{t}$ from ATLAS

#### **Templates**



#### Fit to data



#### Main uncertainties

| Description   | Value |
|---------------|-------|
|               | [GeV] |
| Statistics    | 0.61  |
| Parton shower | 0.08  |
| MC generator  | 0.08  |
| ISR/FSR       | 0.07  |
| b tagging     | 0.08  |

| <b>Total systematic</b> | 0.41 |
|-------------------------|------|
| Residual b/b diffs.     | 0.08 |
| K in b jets             | 0.08 |
| b/b decay uncertainties | 0.35 |

PYTHIA vs. EVTGEN

 $\Delta m_t = +0.67 \pm 0.61(\text{stat}) \pm 0.41(\text{syst})\text{GeV}$ 





### **Conclusions**



- Steady progress in precision of  $m_t$  measurements at the LHC
- Statistics no longer a problem
- Modelling systematics are hard to quantify and differ somewhat between experiments
- Uncertainty now at 1 GeV level
  - Improving further is hard work, but ongoing!
- Combinations are subject of next talk
- No difference seen between  $m_{t}$  and  $m_{ar{t}}$



# **Backup**

### ATLAS dilepton ATLAS-CONF-2013-077 http://atlas.web.cern.ch/Atlas/GROUPS/PHYS ICS/CONFNOTES/ATLAS-CONF-2013-077/

### **Event selection**

#### Electron:

- $-E_{\tau} > 25 \text{ GeV}$
- $|\eta| < 2.47$
- Isolation ( $E_{\scriptscriptstyle T}$  and  $p_{\scriptscriptstyle T}$ )
- Muon
  - $-p_{\tau} > 20 \text{ GeV}$
  - $|\eta| < 2.5$
  - Isolation (E and  $p_{\scriptscriptstyle T}$ )
- Jets
  - Anti- $k_{\tau}$ , R = 0.4
  - $-p_{\tau} > 25 \text{ GeV}$
  - $|\eta| < 2.5, |JVF| > 0.75$

- Good primary vertex
- 2 OS leptons
  - $-E_{T}^{\text{miss}} > 60 \text{ GeV } (ee, \mu\mu)$
  - $-H_{T} > 130 \text{ GeV } (e\mu)$
  - $-m_{\rm ee,uu} > 15 {\rm GeV}$
  - |m 91| > 10 GeV
- ≥ 2 jets
- 2 *b*-tagged jets (70% tagging eff)

# **Systematics**

| Description                          | Value [GeV] |
|--------------------------------------|-------------|
| Measured value                       | 173.09      |
| Statistical uncertainty              | 0.64        |
| Method calibration                   | 0.07        |
| Signal MC generator                  | 0.20        |
| Hadronisation                        | 0.44        |
| Underlying event                     | 0.42        |
| Colour reconnection                  | 0.29        |
| ISR/FSR                              | 0.37        |
| Proton PDF                           | 0.12        |
| Background                           | 0.14        |
| Jet energy scale                     | 0.89        |
| b-jet energy scale                   | 0.71        |
| b-tagging efficiency and mistag rate | 0.46        |
| Jet energy resolution                | 0.21        |
| Missing transverse momentum          | 0.05        |
| Pile-up                              | 0.01        |
| Electron uncertainties               | 0.11        |
| Muon uncertainties                   | 0.05        |
| Total systematic uncertainty         | 1.50        |
| Total uncertainty                    | 1.63        |

Table 2: The measured value of  $m_{\text{top}}$  and the contributions of the various sources detailed in the text to the total systematic uncertainty.

### CMS dilepton Eur. Phys. J. C72 (2012) 2202 http://inspirehep.net/record/1185104

### **Event selection**

- Electron + muon:
  - $-p_{\tau} > 20 \text{ GeV}$
  - $|\eta| < 2.4$
  - Isolation (relative  $p_{T}$  of particles)
- Jets
  - Anti- $k_{\tau}$ , R = 0.5
  - $-p_{T} > 30 \text{ GeV}$
  - $|\eta| < 2.4$

- Good primary vertex
- 2 OS leptons
  - $-E_{T}^{miss} > 40 \text{ GeV } (ee, \mu\mu)$
  - $-m_{\rm ee,uu} > 20 \text{ GeV}$
  - |m 91| > 15 GeV
- ≥ 2 jets
- $\geq 1$  *b*-tagged jet



# **Systematics**

Table 2: List of systematic uncertainties with their contributions to the top-quark mass measurement.

| Source                                       | $\Delta m_{\rm t}  ({\rm GeV})$ |
|----------------------------------------------|---------------------------------|
| Jet energy scale                             | +0.90<br>-0.97                  |
| b-jet energy scale                           | $^{+0.76}_{-0.66}$              |
| Jet energy resolution                        | $\pm 0.14$                      |
| Lepton energy scale                          | $\pm 0.14$                      |
| Unclustered $E_{\mathrm{T}}^{\mathrm{miss}}$ | $\pm 0.12$                      |
| b-tagging efficiency                         | $\pm 0.05$                      |
| Mistag rate                                  | $\pm 0.08$                      |
| Fit calibration                              | $\pm 0.40$                      |
| Background normalization                     | $\pm 0.05$                      |
| Matching scale                               | $\pm 0.19$                      |
| Renormalisation and factorisation scale      | $\pm 0.55$                      |
| Pileup                                       | $\pm 0.11$                      |
| PDFs                                         | $\pm 0.09$                      |
| Underlying event                             | $\pm 0.26$                      |
| Colour reconnection                          | $\pm 0.13$                      |
| Monte Carlo generator                        | $\pm 0.04$                      |
| Total                                        | ±1.48                           |

### KINb method

- See JHEP 1107 (2011) 049, arXiV:1105.5661
- $p_{\tau}(jet) > 35 \text{ GeV}$
- $E_{T}^{miss}$  ( $e\mu$ ) > 30 GeV

 $m_t = 171.8 \pm 0.6 \text{ (stat)} \pm 2.2 \text{ (syst)} \text{ GeV}$ 

 No improvement by combining AMWT and KINb methods

#### ATLAS lepton+jets ATLAS-CONF-2013-046 http://atlas.web.cern.ch/Atlas/GROUPS/PHYS ICS/CONFNOTES/ATLAS-CONF-2013-046/

|                                        | 2d-analysis                |       | 3d-analysis            |       |       |
|----------------------------------------|----------------------------|-------|------------------------|-------|-------|
|                                        | m <sub>top</sub> [GeV] JSF |       | m <sub>top</sub> [GeV] | JSF   | bJSF  |
| Measured value                         | 172.80                     | 1.014 | 172.31                 | 1.014 | 1.006 |
| Data statistics                        | 0.23                       | 0.003 | 0.23                   | 0.003 | 0.008 |
| Jet energy scale factor (stat. comp.)  | 0.27                       | n/a   | 0.27                   | n/a   | n/a   |
| bJet energy scale factor (stat. comp.) | n/a                        | n/a   | 0.67                   | n/a   | n/a   |
| Method calibration                     | 0.13                       | 0.002 | 0.13                   | 0.002 | 0.003 |
| Signal MC generator                    | 0.36                       | 0.005 | 0.19                   | 0.005 | 0.002 |
| Hadronisation                          | 1.30                       | 0.008 | 0.27                   | 0.008 | 0.013 |
| Underlying event                       | 0.02                       | 0.001 | 0.12                   | 0.001 | 0.002 |
| Colour reconnection                    | 0.03                       | 0.001 | 0.32                   | 0.001 | 0.004 |
| ISR and FSR (signal only)              | 0.96                       | 0.017 | 0.45                   | 0.017 | 0.006 |
| Proton PDF                             | 0.09                       | 0.000 | 0.17                   | 0.000 | 0.001 |
| single top normalisation               | 0.00                       | 0.000 | 0.00                   | 0.000 | 0.000 |
| W+jets background                      | 0.02                       | 0.000 | 0.03                   | 0.000 | 0.000 |
| QCD multijet background                | 0.04                       | 0.000 | 0.10                   | 0.000 | 0.001 |
| Jet energy scale                       | 0.60                       | 0.005 | 0.79                   | 0.004 | 0.007 |
| b-jet energy scale                     | 0.92                       | 0.000 | 0.08                   | 0.000 | 0.002 |
| Jet energy resolution                  | 0.22                       | 0.006 | 0.22                   | 0.006 | 0.000 |
| Jet reconstruction efficiency          | 0.03                       | 0.000 | 0.05                   | 0.000 | 0.000 |
| b-tagging efficiency and mistag rate   | 0.17                       | 0.001 | 0.81                   | 0.001 | 0.011 |
| Lepton energy scale                    | 0.03                       | 0.000 | 0.04                   | 0.000 | 0.000 |
| Missing transverse momentum            | 0.01                       | 0.000 | 0.03                   | 0.000 | 0.000 |
| Pile-up                                | 0.03                       | 0.000 | 0.03                   | 0.000 | 0.001 |
| Total systematic uncertainty           | 2.02                       | 0.021 | 1.35                   | 0.021 | 0.020 |
| Total uncertainty                      | 2.05                       | 0.021 | 1.55                   | 0.021 | 0.022 |

Table 2: The measured values of  $m_{top}$  and the contributions of various sources to the uncertainty of the 2d-analysis and 3d-analysis. The corresponding uncertainties on the measured values of the JSF and for the 3d-analysis also the bJSF are also shown. The Signal MC generator systematic uncertainty is obtained from pairs of independent Monte Carlo samples. The statistical precision on  $m_{top}$  of all Monte Carlo samples in the 3d-analysis (2d-analysis) is about 0.15 GeV (0.07 GeV). The corresponding values for the JSF and bJSF are 0.0017 and 0.0006, respectively. Consequently, for the uncertainty source Signal MC generator the statistical uncertainty of the evaluation of the systematic uncertainty on  $m_{top}$  is 0.21 GeV for the 3d-analysis and 0.10 GeV for the 2d-analysis. For the sources Hadronisation, Underlying event, Colour reconnection, ISR and FSR the same hard scattering events before hadronisation are used, albeit with respective different further processing for the source under study. For these sources the samples are not independent, and the statistical uncertainty of the evaluation of the systematic uncertainty is correspondingly smaller.

# CMS lepton+jets JHEP 1212 (2012) 105 http://inspirehep.net/record/1185101

#### **Event selection**

- Electron + muon:
  - $-p_{_{\rm T}} > 30~{\rm GeV}$
  - $|\eta| < 2.1$
  - Isolation (relative  $p_{T}$  of particles)
- Jets
  - Anti- $k_{\tau}$ , R = 0.5
  - $-p_{T} > 30 \text{ GeV}$
  - $|\eta| < 2.4$

- Good primary vertex
- 2 OS leptons
  - $-E_{T}^{miss} > 40 \text{ GeV } (ee, \mu\mu)$
  - $-m_{\rm ee,uu} > 20~{\rm GeV}$
  - |m 91| > 15 GeV
- ≥ 4 jets
- $\geq$  2 *b*-tagged jets

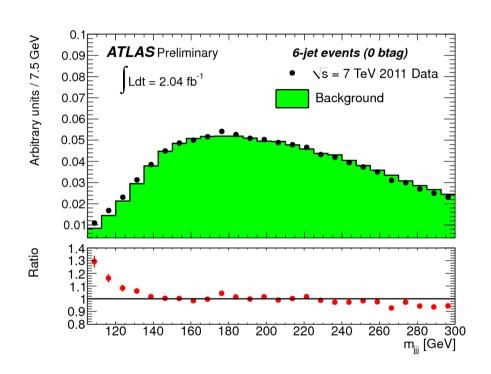


Table 1: List of systematic uncertainties for the muon+jets and electron+jets final states, and for the combined fit to the entire data set

|                                              | μ+jets                                  |                         | e+jets                             |                          | $\ell$ +jets                  |                               |
|----------------------------------------------|-----------------------------------------|-------------------------|------------------------------------|--------------------------|-------------------------------|-------------------------------|
|                                              | $\delta_{m_{\mathfrak{t}}}^{\mu}$ (GeV) | $\delta^{\mu}_{ m JES}$ | $\delta_{m_{\rm t}}^{\rm e}$ (GeV) | $\delta_{ m JES}^{ m e}$ | $\delta_{m_{t}}^{\ell}$ (GeV) | $\delta_{	extsf{JES}}^{\ell}$ |
| Fit calibration                              | 0.08                                    | 0.001                   | 0.09                               | 0.001                    | 0.06                          | 0.001                         |
| b-JES                                        | 0.60                                    | 0.000                   | 0.62                               | 0.000                    | 0.61                          | 0.000                         |
| $p_{\mathrm{T}}$ - and $\eta$ -dependent JES | 0.30                                    | 0.001                   | 0.28                               | 0.001                    | 0.28                          | 0.001                         |
| Lepton energy scale                          | 0.03                                    | 0.000                   | 0.04                               | 0.000                    | 0.02                          | 0.000                         |
| Missing transverse momentum                  | 0.05                                    | 0.000                   | 0.07                               | 0.000                    | 0.06                          | 0.000                         |
| Jet energy resolution                        | 0.22                                    | 0.004                   | 0.24                               | 0.004                    | 0.23                          | 0.004                         |
| b tagging                                    | 0.11                                    | 0.001                   | 0.15                               | 0.001                    | 0.12                          | 0.001                         |
| Pileup                                       | 0.07                                    | 0.002                   | 0.08                               | 0.001                    | 0.07                          | 0.001                         |
| Non-tt background                            | 0.10                                    | 0.001                   | 0.16                               | 0.000                    | 0.13                          | 0.001                         |
| Parton distribution functions                | 0.07                                    | 0.001                   | 0.07                               | 0.001                    | 0.07                          | 0.001                         |
| Renormalization and                          | 0.23                                    | 0.004                   | 0.41                               | 0.005                    | 0.24                          | 0.004                         |
| factorization scales                         | 0.23                                    | 0.004                   | 0.41                               | 0.005                    | 0.24                          | 0.004                         |
| ME-PS matching threshold                     | 0.17                                    | 0.000                   | 0.15                               | 0.001                    | 0.18                          | 0.001                         |
| Underlying event                             | 0.26                                    | 0.002                   | 0.24                               | 0.001                    | 0.15                          | 0.002                         |
| Color reconnection effects                   | 0.66                                    | 0.004                   | 0.39                               | 0.003                    | 0.54                          | 0.004                         |
| Total                                        | 1.06                                    | 0.008                   | 1.00                               | 0.007                    | 0.98                          | 0.008                         |

#### ATLAS all-hadronic ATLAS-CONF-2012-030 http://atlas.web.cern.ch/Atlas/GROUPS/PHYS ICS/CONFNOTES/ATLAS-CONF-2012-030/

#### **Event selection**


- Trigger
  - ≥ 5 jets  $p_{T}$  > 30 GeV (analysis sample)
  - ≥ 4 jets  $p_{T}$  > 45 GeV (control sample)
- Jets
  - Anti- $k_{\tau}$ , R = 0.4
  - $|\eta| < 4.5$
- Note:
  - MC@NLO used as signal MC for this analysis

- Good primary vertex
- $\geq$  5 jets  $p_{\scriptscriptstyle T}$  > 55 GeV
- $6^{th}$  jet  $p_{\tau} > 30$  GeV
- $\Delta R > 0.6$  jet separation
- 2 b-tagged jets
  - $-\Delta R > 1.2$
- $E_{\rm T}^{\rm miss} / (\sqrt{H_{\rm T}} \, {\rm GeV}^{1/2}) < 3$
- $50 < m_w < 110 \text{ GeV}$
- Mass  $\chi^2$  < 8
- Rescale light-quark jet energies to  $m_w$



# **Event mixing**

- Use 5 jet events
  - Add jets with p<sub>T</sub> < 5<sup>th</sup>
     highest p<sub>T</sub> jet from ≥6
     jet events
- Control QCD background with 4/5 jet events
  - Add in 2/1 jets from events with ≥6 jets
- Check with b-tagged and b-anti-tagged samples



| Source                         | Uncertainty [GeV] |
|--------------------------------|-------------------|
| Method                         | 0.4               |
| Template statistics            | 0.9               |
| MC generator                   | 0.5               |
| ISR/FSR                        | 1.7               |
| PDF                            | 0.6               |
| Background modelling           | 1.9               |
| Jet energy scale               | 2.1               |
| b-jet energy scale             | 1.4               |
| b-tag efficiency scale factors | 0.3               |
| Jet energy resolution          | 0.3               |
| Jet reconstruction efficiency  | 0.2               |
| Total systematic uncertainty   | 3.8               |

Table 1: Compilation of systematic uncertainty contributions on the measurement of  $m_t$ .

#### CMS all-hadronic JHEP 1212 (2012) 105 http://inspirehep.net/record/1185101

#### **Event selection**

- Trigger
  - ≥ 4 jets  $p_{\scriptscriptstyle T}$  > 50 GeV
  - 5<sup>th</sup> jet  $p_{\scriptscriptstyle T}$  > 40 GeV
  - $6^{th}$  jet  $p_T > 30$  GeV for 3.19 fb<sup>-1</sup>
- Jets
  - Anti- $k_{\tau}$ , R = 0.5
  - $|\eta| < 2.4$
- Note:
  - MC@NLO used as signal MC for this analysis

- Good primary vertex
- $\geq$  4 jets  $p_{\scriptscriptstyle T}$  > 60 GeV
- 5<sup>th</sup> jet  $p_{T} > 50 \text{ GeV}$
- 6<sup>th</sup> jet  $p_{T} > 40 \text{ GeV}$
- $\geq$  2 *b*-tagged jets
  - $\epsilon = 60\%$
  - $-\Delta R_{bb} > 1.5$



# **Event mixing**

- Use all events after b-tagging
- Mix jets from different events
- Require at least 2
   b-tagged jets in each
   event
- Apply standard cuts on  $P_{\text{gof}}$  and  $\Delta R_{bb}$
- Signal fraction from simulation
  - varied by ±5%

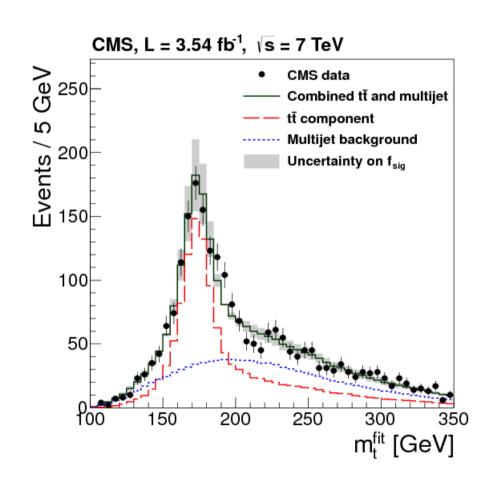





Table 2: Overview of systematic uncertainties. The total is defined by adding in quadrature the contributions from all sources, by choosing for each the larger of the estimated shift or its statistical uncertainty, as indicated by the bold script.

|                                         | 1D analysis                | 2D analysis                |                                |
|-----------------------------------------|----------------------------|----------------------------|--------------------------------|
|                                         | $\delta_{m_{\rm t}}$ (GeV) | $\delta_{m_{\rm t}}$ (GeV) | $\delta_{ m JES}$              |
| Fit calibration                         | 0.13                       | 0.14                       | 0.001                          |
| Jet energy scale                        | $0.97 \pm 0.06$            | $0.09 \pm 0.10$            | $0.002 \pm 0.001$              |
| b-JES                                   | $0.49 \pm 0.06$            | $0.52 \pm 0.10$            | $\textbf{0.001} \pm 0.001$     |
| Jet energy resolution                   | $0.15 \pm 0.06$            | $0.13 \pm 0.10$            | $0.003 \pm 0.001$              |
| b tagging                               | $0.05 \pm 0.06$            | $0.04 \pm 0.10$            | $\textbf{0.001} \pm 0.001$     |
| Trigger                                 | ${f 0.24}\pm 0.06$         | $0.26 \pm 0.10$            | $0.006 \pm 0.001$              |
| Pileup                                  | $0.05 \pm 0.06$            | $0.09 \pm 0.10$            | $\textbf{0.001} \pm 0.001$     |
| Parton distribution functions           | $0.03 \pm 0.06$            | $0.07 \pm 0.10$            | $\textbf{0.001} \pm 0.001$     |
| Renormalization and factorization scale | $0.08 \pm 0.22$            | $0.31 \pm 0.34$            | $\boldsymbol{0.005} \pm 0.003$ |
| ME-PS matching threshold                | $0.24 \pm 0.22$            | $0.29 \pm 0.34$            | $0.001 \pm \textbf{0.003}$     |
| Underlying event                        | $0.20 \pm 0.12$            | $0.42 \pm 0.20$            | $\textbf{0.004} \pm 0.002$     |
| Color reconnection effects              | $0.04 \pm 0.15$            | $0.58 \pm 0.25$            | $0.006 \pm 0.002$              |
| Multijet background                     | $0.13 \pm 0.06$            | $0.60 \pm 0.10$            | $0.006 \pm 0.001$              |
| Total                                   | 1.21                       | 1.23                       | 0.013                          |

# ATLAS $\Delta m_t$ ATLAS-CONF-2012-006

| Systematic Uncertainty                   | $\Delta m \; [{ m GeV}]$ |
|------------------------------------------|--------------------------|
| $b/\bar{b}$ decay uncertainties          | 0.35                     |
| Kaons inside b-jets                      | 0.08                     |
| Residual $b$ vs $\bar{b}$ differences    | 0.08                     |
| b-tagging                                | 0.08                     |
| Mis-tagging as a $b$ -quark jet          | 0.05                     |
| Jet energy scale                         | 0.04                     |
| b-jet energy scale                       | 0.05                     |
| Jet energy resolution                    | 0.03                     |
| Parton shower                            | 0.08                     |
| MC generator                             | 0.08                     |
| ISR/FSR                                  | 0.07                     |
| Calibration method                       | 0.05                     |
| Non- $t\bar{t}$ normalization            | 0.04                     |
| Non- $t\bar{t}$ shape                    | 0.04                     |
| Parton distribution function             | 0.02                     |
| Asymmetry in lepton energy scale         | < 0.01                   |
| Electron reconstruction & identification | 0.02                     |
| Muon reconstruction & identification     | 0.04                     |
| Top mass input                           | 0.04                     |
| Total                                    | 0.41                     |

Table 2: Systematic uncertainties.

CMS  $\Delta m_{t}$ 

JHEP 1206 (2012) 109

http://inspirehep.net/record/1110691

CMS-PAS-TOP-12-031

http://cds.cern.ch/record/1528156



# **Event selection (2012)**

#### Electron:

- $-p_{_{\rm T}} > 32 \; {\rm GeV}$
- $|\eta| < 2.5$
- Isolation
- Muon:
  - $-p_{_{\rm T}} > 25~{\rm GeV}$
  - $|\eta| < 2.1$
  - Isolation
- Jets
  - Anti- $k_{\tau}$ , R = 0.5
  - $-p_{_{\rm T}} > 30~{\rm GeV}$
  - $|\eta| < 2.5$

- Good primary vertex
- 1 charged lepton
- $E_{T}^{miss} > 40 \text{ GeV}$
- ≥ 4 jets
- $\geq 1$  *b*-tagged jets ( $\epsilon = 65.6\%$ )



# Systematics (2012)

Table 2: Overview of systematic uncertainties on  $\Delta m_t$ . For each contribution the larger of the estimated shift or its statistical uncertainty is taken, as indicated by the bold script.

| Source                        | Estimated effect (MeV)        |
|-------------------------------|-------------------------------|
| Jet energy scale              | $\textbf{17} \pm \textbf{15}$ |
| Jet energy resolution         | $8\pm 11$                     |
| b vs. b̄ jet response         | $64 \pm 7$                    |
| Signal fraction               | $\textbf{45}\pm 2$            |
| Background charge asymmetry   | $12.43 \pm 0.03$              |
| Background composition        | $\textbf{50}\pm 1$            |
| Pileup                        | $\textbf{17.4} \pm 0.4$       |
| b-tagging efficiency          | $20 \pm 8$                    |
| b vs. b tagging efficiency    | $43 \pm 6$                    |
| Method calibration            | $15 \pm 54$                   |
| Parton distribution functions | $12\pm3$                      |
| Total                         | 122                           |