

m_{top}

combinations from around the world

Pedro Ferreira da Silva (CERN/LIP)

on behalf of the ATLAS, CMS, CDF and D0 collaboration

Outline

Main **uncertainties** affecting the experimental measurement of m_{top}. **Correlations** between uncertainties. Combination **results**.

Building up a m_{top} measurement

MET

b-jet

m_{lb} [GeV]

- m_{top} is usually measured from the invariant mass of decay products
 - Reconstructed 3-body mass, lepton-jet invariant mass, lepton-J/ψ mass, MT2, ...
 - Combinatorics can all be taken into account: matrixelement weighting, ideogram technique, kinematical fitter...

ATLAS-CONF-2013-077

5 GeV **ATLAS** Preliminary vs=7 TeV data ----- 3% background 400 best fit: $m_{top} = 173.09 \pm 0.64 \text{ GeV}$ events / 2InL 300 $Ldt=4.7 \text{ fb}^{-1}$ 0.5 200 0<mark>172</mark> 174 m_{top} [GeV] 100 40 60 80 100 120 140 160

- Decay product kinematics convey, as well, information on m_{top}
 - Full kinematics may be used to to construct event probability based on matrix elements
 - Partial kinematics sensitive to initial mass: lepton p_T, b-energy,
 B-lifetime, ...

Main uncertainties: JES (I)

Main uncertainties: JES (II)

• Jet energy scale is amongst the leading systematic uncertainties

• **Remainders** of absolute calibration, MPI and UE corrections (CDF)

TOP 2013

Main uncertainties: JES (III)

Jet energy scale is amongst the leading systematic uncertainties

- Calibrating in-situ light + b-jet energy scales strengthens individual measurement
- Use final state topology to constraint partially global JES in the measurement
- \rightarrow W \rightarrow qq' used to constraint light jet energy scale \rightarrow relative b-to-light jet energy scale factor from ratio R₁

7/25

- Signal modeling is crucial for most methods and may include ۲
- top pair kinematics description compare diff. generators, qq/gg fractions
- interplay with the underlying event: tt-specific **hadronization color reconnection**, UE tune, **ISR/FSR** model, PDFs
 - model uncertainties (ATLAS)

- Signal modeling is crucial for most methods and may include
- top pair kinematics description compare diff. generators, qq/gg fractions
- interplay with the underlying event: **color reconnection**, UE tune, ISR/FSR model, PDFs
- tt-specific hadronization model uncertainties (ATLAS)

Large statistics samples can be used to start constraining some uncertainties

Other uncertainties

- **b-tag systematic uncertainty** may depend on
 - specificity of the method, e.g. 3D-fit exhibits a large sensitivity
 - purity required in selection

Detector modeling systematics may comprise

- Lepton energy scale and resolution
- jet resolution (relevant for ME-based measurements)
- Missing transverse energy (E_T^{miss})
- jet reconstruction

Background and analysis method systematic terms

- Dilepton channels less affected by background
- Heavy flavor + fact./ren. scales in describing W+jets background
- Pileup contamination (MHI) is particularly relevant at the LHC
- Most methods rely as well on a specific calibration procedure

TOP 2013

Gev

Events/2

• No single measurement holds the ultimate precision → combine results

TOP 2013

Inputs for the combination(s)

11/25

ATLAS

• Dileptons ATLAS-CONF-2013-077

 $173.09 \pm 0.64_{stat} \pm 1.50_{syst} \text{ GeV}$

Lepton+jets ATLAS-CONF-2013-046

 $172.31 \pm 0.23_{stat} \pm 1.53_{syst} \text{ GeV}$

CMS

• Dileptons EPJC 72 (2012) 2202

 $172.50 \pm 0.43_{stat} \pm 1.46_{syst}$ GeV

• Lepton+jets JHEP 12 (2012) 105

 $173.49 \pm 0.27_{stat} \pm 1.03_{syst} \text{ GeV}$

• All jets arXiv:1307.4617, sub. to EPJC

 $173.49 \pm 0.69_{stat} \pm 1.30_{syst}$ GeV

Only quoting results used in grand combinations

CDF Dileptons **Run11** PRD 83, 111101 (2011) **Run I** PRL 82, 271 (1999) $170.28 \pm 1.95_{stat} \pm 3.09_{syst}$ $167.4 \pm 10.3_{stat} \pm 4.9_{syst}$ Lepton+jets **Run I** PRD 63, 032003 (2001) RunII PRL 109 152003 $176.1 \pm 5.1_{stat} \pm 5.3_{syst}$ $172.85 \pm 0.52_{\text{stat}} \pm 0.98_{\text{syst}}$ All jets Run PRL 79, 1992–1997 (1997) Run II PLB 714, 24 (2012) $186.0 \pm 10.0_{stat} \pm 5.7_{syst}$ $172.47 \pm 1.43_{stat} \pm 1.49_{syst}$ MEt Lxy Run II PRD 81,032002 (2010) Run II PRD 88,011101(R) (2013) $166.90 \pm 9.0_{stat} \pm 2.90_{syst}$ $173.95 \pm 1.26_{stat} \pm 1.35_{syst}$ **DO** Dileptons **Run11** PRD 86,051103 (2012) **Run I** PRD 60,052001 $174.00 \pm 2.36_{stat} \pm 1.44_{syst}$ $168.4 \pm 12.3_{stat} \pm 3.6_{syst}$ Lepton+jets Run1 Nature 429 , 638 (2004) Run11 PRD 84, 032004 (2011) $180.1 \pm 3.6_{stat} \pm 3.9_{syst}$ $174.94 \pm 0.83_{stat} \pm 1.24_{syst}$

Combination method

- Best linear unbiased method (BLUE) NIM A270 (1988) 110, NIM A500 (2003) 391
 - Linear combination of input measurements (y_i) : $\hat{Y} = \sum_{i=1}^n \lambda_i y_i$
 - Set of coefficients (weights) minimizes final uncertainty (optimal): $\lambda_i = \frac{(\mathcal{M}^{-1}\mathbf{U})_i}{\mathbf{\tilde{U}}\mathcal{M}^{-1}\mathbf{U}}$
 - Individual uncertainties and correlations are into account for the final uncertainty: $\sigma_{\hat{y}}^2 = \sum_{i=1}^n \sum_{j=1}^n \lambda_j \mathcal{M}_{ij} \lambda_j$
- **Correlations** are the key to the "success" of the combination
 - For correlated measurements may yield negative weights for less precise measurements
 - Sometimes based on a guess estimate: evaluate hypothesis dependency (next slides)
 - Alternatively minimize on Fisher information varying the correlation factors (globally, by source or for offdiagonal elements)

Correlations between systematic uncertainties

Not all the systematics can be matched exactly 1:1. TeVEWWG: years of discussion between CDF and D0 lead to well established list of systematics. TOPLHCWG: second round of combination, harmonization between ATLAS and CMS in good progress, some systematics handled differently.

Most relevant correlations: JES

14/25

Correlation of JES between ATLAS and CMS is split into four groups:

TOP 2013

Other correlations

• Signal: assume $\rho_{LHC} = I$, even if assessment is different between experiments

Monte Carlo setup

ATLAS NLO level+shower model comparison Powheg vs MC@NLO + Pythia vs Herwig

CMS Born level Madgraph to NLO Powheg comparison

Radiation modeling systematics

ATLAS ISR/FSR variations in Pythia constrained by data

CMS consistent within same Madgraph+Pythia6 setup: ME-PS and $Q=\mu_{R}=\mu_{E}$ variations by $\frac{1}{2}$ and 2

• Background modeling from MC and analysis method systematic terms

assumed to be uncorrelated between the experiments

• Underlying event, pileup (MHI), PDFs

- assumed to be fully correlated between the experiments
- For Tevatron MHI modeling is uncorrelated between CDF and D0

Stability checks

- Can be made a posteriori on the assumed correlations. Some examples:
- Rescale correlations in the LHC measurements
 - experiment-independent and LHC correlations treated independently or commonly
 - ideal scenario gains extra 328 MeV in final uncertainty from fully independent methods and experiments
 - main gains expected to come from fully uncorrelated single measurements
- Possible residual correlation between detector modeling at the LHC leads to Δσ=6 MeV when increased to 0.5
- Sources of measurements used for **b-tagging** efficiency (μ +jets and tt) may uncorrelate further this uncertainty: lead to a maximum $\Delta\sigma$ =8 MeV

 Combination method: minimize on Fisher information instead of uncertainty yields similar final uncertainty (using method proposed in arXiv:1307.4003v2)

Results

The individual measurements are used taking into account the correlation hypothesis. Tevatron, ATLAS, CMS and LHC combinations.

Results: Tevatron

arXiv:1305.3929v1

	arXiv:1305.3929v1	ainties @	Tevatron
•	Combination uncertainty is dominat	ed by:	
	 JES components (iJES, dJES, rJES) 		t w
	→ signal model (CR) ►		
		Tevatron combined values (G	eV/c^2
	$M_{ m t}$	173.20	
	In situ light-jet calibration (iJES)	0.36	
	Response to $b/q/g$ jets (aJES)	0.09	_
	Model for b jets (bJES)	0.11	
	Out-of-cone correction (cJES)	0.01	
	Light-jet response (2) (dJES)	0.15	
	Light-jet response (1) (rJES)	0.16	J
	Lepton modeling (LepPt)	0.05	
	Signal modeling (Signal)	0.52	
	Jet modeling (DetMod)	0.08	
	Offset (UN/MI)	0.00	
	Background from theory (BGMC)	0.06	
	Background based on data (BGData)	0.13	
	Calibration method (Method)	0.06	
	Multiple interactions model (MHI)	0.07	
	Systematic uncertainty (syst)	0.71	
	Statistical uncertainty (stat)	0.51	
	Total uncertainty	0.87	

Results: ATLAS and CMS

TOP-13-002, TOP-13-005

Results: outlook for alternative measurements @ CMS

TOP-13-002

Pole mass from cross section

- theoretically well defined quantity
- Expected to differ by ~I GeV from other measurements
- Can't be combined with MC-based top mass definitions used in "classic" measurements

Lepton-jet endpoints analysis

- although no iJES performed, JES is distinct from other measurements
- no calibration from simulation

• B-hadron lifetime

- Virtually no JES systematic but hadronization, fragmentation mapped to bJES
- Depending on theory model for $p_{\tau}(t)$

for more details on alternative methods see talk by F. Deliot

 $m_{\rm t} = 173.49 \pm 0.36$ (stat.) ± 0.91 (syst.) GeV

 χ^2 /ndf=1.6/6 corresponds to 95% probability

With improved precision endpoints and B-hadron lifetime are expected to play crucial role

Results: LHC

Measured with 0.55% uncertainty

 χ^2 /ndf=1.8/4 corresponds to 77% probability

Individual pulls within $I\sigma$

$$m_{\rm top} = 173.29 \pm 0.23 \, ({\rm stat}) \pm 0.92 \, ({\rm syst}) \, {\rm GeV}$$

In excellent agreement with the Tevatron combination

Results: uncertainties @ LHC

Combination uncertainty is dominated by similar sources to the Tevatron

several JES components		ATLAS comb.	CMS comb.	LHC comb.
(iIES, uncorr. bIES)	Measured m _{top}	172.65	173.59	173.29
(1)20, 4112011, 5)20)	iJES	0.41	0.27	0.26
signal model	uncorrelated JES comp.	0.66	0.32	0.29
(CP radiation)	in-situ JES comp.	0.30	0.08	0.10
(CR, radiation)	intercalib. JES comp.	0.28	0.02	0.07
b-tagging	flavour JES comp.	0.21	0.19	0.16
	b-jet energy scale	0.35	0.56	0.43
	Monte Carlo simulation	0.40	0.06	0.14
	Radiation modelling	0.42	0.28	0.32
	Colour reconnection	0.31	0.48	0.43
	Underlying event	0.25	0.17	0.17
	Proton PDF	0.15	0.07	0.09
	Detector modelling	0.22	0.25	0.20
	b-tagging	0.66	0.11	0.25
	Lepton reconstruction	0.07	0.00	0.01
	Background from MC	0.06	0.10	0.08
	Background from Data	0.06	0.03	0.04
	Method	0.08	0.07	0.06
	Multiple Hadronic Interactions	0.02	0.06	0.05
	Statistics	0.31	0.29	0.23
	Systematics	1.40	0.99	0.92
	Total Uncertainty	1.43	1.03	0.95

TOP 2013

-94

Conclusions

Achieving a final experimental number on $\rm m_{_{top}}$ is not as simple as solving Rubik's cube...

HOW TO SOLVE

STEP 1. MAKE AN ON THE TOP LAYER .

STEP 2.

ALIGN THE CORNER PIECES DIRECTLY BELOW THE POSITION YOU WANT THEM.

STEP 3.

SHUFFLE THE CORNER PIECES INTO POSITION: RI-DI-R-D

REPEAT UNTIL THE PIECE IS IN PLACE

Conclusions

• Overview of the main uncertainties affecting experimental m_{top} measurements

- JES partially constrained in situ for both light jets (both TEV and LHC) and b jets (ATLAS)
- Colour reconnection, UE and ISR/FSR start to be constrained from data @ the LHC
- Other uncertainties are smaller and closer to " Λ_{OCD} -limit" at Hadron Colliders

CMS preliminary, 19.6 fb⁻¹, 1s=8 TeV dilepton channel Events / (0.2 GeV) CMS-PAS-TOP-13-007 60 Data ···· tt (PY6)+BG **Combination of different, outstanding, measurements** tť (MG) tt others (MG) Sinale too Common procedure adopted by both TEV and LHC Dihosons $Z/\gamma^* \rightarrow 1$ $W \rightarrow hv$ Harmonization of uncertainties closer worldwide combination needs b-fragmentation/hadronization need further discussion 10 expect to gain in the future with alternative methods (endpoints, L_{xv} , J/ ψ +I) 5 M_{u+u} [GeV] 1 2 з

We know experimentally (a) top mass with 0.5% (TEV) – 0.54% (LHC) precision

- May expect further reduction from worldwide combination
- May expect reduction of some of the main uncertainties for next round of measurements from LHC
- Theoretical input is badly needed on the interpretation of this quantity and its relation with m_r^{pole}

TOP 2013

Backup

Combination matrix: Tevatron

27/25

	Run I published					Run II prel.						
		CDF		D	ø		CI	DF		DØ		CDF
	ℓ+jets	<u>ee</u>	alljets	ℓ+jets	ee	ℓ+jets	ll	alljets	Lxy	ℓ+jets	ee	MEt
$\int \mathcal{L} dt$	0.1	0.1	0.1	0.1	0.1	8.7	5.6	5.8	1.9	3.6	5.3	8.7
Result	176.1	167.4	86.0	180.1	168.4	172.85	170.28	172.47	166.90	174.94	174.00	173.95
In situ light-jet cali- bration (iJES) Response to b/q/g	n/a	n/a	n/a	n/a	n/a	0.49	n/a	0.95	n/a	0.53	0.55	1.05
jets (aJES) Model for <i>b</i> jets	n/a	n/a	n/a	0.0	0.0	0.09	0.14	0.03	n/a	0.0	0.40	0.10
(bJES) Out-of-cone correction	0.6	0.8	0.6	0.7	0.7	0.16	0.33	0.15	n/a	0.07	0.20	0.17
(cJES) Light-jet response (2)	2.7	2.6	3.0	2.0	2.0	0.21	2.13	0.24	0.36	n/a	n/a	0.18
(dJES) Light-jet response (1)	0.7	0.6	0.3	2.5	1.1	0.07	0.58	0.04	0.06	0.63	0.56	0.04
(rJES) Lepton modeling	3.4	2.7	4.0	n/a	n/a	0.48	2.01	0.38	0.24	n/a	n/a	0.40
(LepPt) Signal modeling	п/е	п/е	n/e	п/е	п/е	0.03	0.27	n/a	n/a	0.17	0.35	п/а
(Signal) Jet modeling	2.6	2.9	2.0	1.1	1.8	0.61	0.73	0.62	0.90	0.77	0.86	0.64
(DetMod) Offset	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.36	0.50	0.0
(UN/MI) Background from	n/a	n/a	n/a	1.3	1.3	n/a	n/a	n/a	n/a	n/a	n/a	п/в
theory (BGMC) Background based on	1.3	0.3	1.7	1.0	1.1	0.12	0.24	0.0	0.80	0.18	0.0	0.0
data (BGData) Calibration method	0.0	0.0	0.0	0.0	0.0	0.16	0.14	0.56	0.20	0.23	0.20	0.12
(Method) Multiple interactions	0.0	0.7	0.6	0.6	1.1	0.00	0.12	0.38	2.50	0.16	0.51	0.31
model (MHI)	n/e	п/е	n/e	п/е	n/e	0.07	0.23	0.08	0.0	0.05	0.0	0.18
Systematic uncertainty (Syst) Statistical uncertainty	5.3	4.9	5.7	3.9	3.6	0.98	3.09	1.49	2.90	1.24	1.44	1.35
(Stat)	5.1	10.3	10.0	3.6	12.3	0.52	1.95	1.43	9.00	0.83	2.36	1.26
Total uncertainty	7.3	11.4	11.5	5.3	12.8	1.11	3.79	2.06	9.46	1.50	2.76	1.85

P. Silva

	di-l	l + Jets	di-l	l + jets	all-jets	Corre	Correlations	
	2010	2010	2011	2011	2011	$ ho_{ m chan}$	$ ho_{ m year}$	2013
Measured <i>m</i> _t	175.50	173.10	172.50	173.49	173.49			173.44
iJES: <i>in-situ</i> JES factor	n/a	n/a	n/a	0.33	n/a	0	0	0.25
bJES: relative b-jet scale	0.90	0.90	0.76	0.61	0.49	1	1	0.54
dJES1: flavor JES comp.	1.21	0.87	0.58	0.11	0.58	1	1	0.18
dJES2: inter-calib. JES comp.	0.17	0.08	0.08	0.01	0.08	1	1	0.02
dJES3: MPF in-situ JES comp.	0.76	0.16	0.35	0.02	0.35	1	1	0.11
dJES4: uncorrelated JES comp.	1.48	1.90	0.69	0.24	0.69	1	1	0.22
rJES: other JES uncertainties	3.28	n/a	n/a	n/a	n/a	0	0	0.07
Lepton energy scale	0.30	n/a	0.14	0.02	n/a	1	1	0.01
MC generator	0.50	n/e	0.04	0.02	0.19			0.07
ISR/FSR	0.20	0.20	n/a	n/a	n/a			0.02
Parton distribution functions	0.50	0.10	0.09	0.07	0.06			0.06
Factorization scale	0.60	1.10	0.55	0.24	0.22			0.16
ME-PS matching threshold	0.70	0.40	0.19	0.18	0.24			0.17
Signal						1	1	
Jet energy resolution	0.50	0.10	0.14	0.23	0.15			0.21
b-tagging	0.40	0.10	0.09	0.12	0.06			0.10
$E_{\rm T}^{\rm miss}$ scale	0.10	0.40	0.12	0.06	n/a			0.01
Detector Modeling						1	1	
Underlying event	1.30	0.20	0.05	0.15	0.20	1	1	0.13
Background MC	0.10	0.20	0.05	0.13	n/a	1	1	0.08
Background Data	n/a	0.40	n/a	n/a	0.13	0	0	0.05
Fit calib. and MC stat.	0.20	0.10	0.40	0.06	0.13	0	0	0.06
Pileup	1.00	0.10	0.11	0.07	0.06	1	0	0.06
Color reconnection	n/e	n/e	0.13	0.54	0.15	1	1	0.46
Trigger	n/a	n/a	n/a	n/a	0.24	1	0	0.08
Statistical Uncertainty	4.60	2.10	0.43	0.27	0.69			0.37
Total Systematic Uncertainty	4.53	2.66	1.46	1.03	1.23			0.91
Total Uncertainty	6.45	3.39	1.52	1.06	1.41			0.98
Combination Coefficient (%)	- 2.2	- 9.3	3.8	76.2	31.5	χ^2 /	ndf = 1	.4 / 4
Pull	0.32	-0.11	-0.82	0.11	0.05	χ^2	prob. =	85 %

Combination matrix : CMS methods

alternative

	Endpoint	Lxy	Corre	Correlations		CMS*
	2011	2012	$ ho_{ m chan}$	$ ho_{ m year}$	2013	2013
Measured $m_{\rm t}$	173.90	173.48			173.49	173.45
iJES: in-situ JES factor	n/a	n/a	0	0	0.23	0.19
bJES: relative b-jet scale	0.71	0.75	1	1	0.55	0.56
dJES1: flavor JES component	n/a	n/a	1	1	0.17	0.20
dJES2: inter-calib. JES comp.	n/a	n/a	1	1	0.02	0.03
dJES3: MPF in-situ JES comp.	n/a	n/a	1	1	0.10	0.11
dJES4: uncorrelated JES comp.	n/a	n/a	1	1	0.20	0.30
rJES: other JES uncertainties	1.86	0.30	0	0	0.11	0.10
Lepton energy scale	0.40	n/a	1	1	0.03	0.03
MC generator	n/a	n/a			0.06	0.05
ISR/FSR	n/a	n/a			0.02	0.01
Parton distribution functions	n/a	0.26			0.06	0.06
Factorization scale	0.16	0.15			0.15	0.22
ME-PS matching threshold	0.11	0.55			0.17	0.18
B-hadron composition	n/a	0.39			0.01	0.01
B-hadron lifetime	n/a	0.29			0.01	0.01
Top quark p_T modeling	n/a	2.57			0.06	0.10
Signal			1	1		
Jet energy resolution	n/a	n/a		·	0.19	0.17
<i>b</i> -tagging	n/a	n/a			0.09	0.08
$E_{\rm T}^{\rm miss}$ scale	n/a	n/a			0.01	0.04
Detector Modeling			1	1		
Underlying event	n/a	0.21	1	1	0.13	0.14
Background MC	0.15	0.36	1	1	0.09	0.09
Background Data	0.50	0.28	0	0	0.06	0.04
Fit calibration and MC statistics	0.58	0.19	0	0	0.07	0.06
Pileup	0.10	n/a	1	0	0.08	0.06
Color reconnection	0.57	0.28	1	1	0.46	0.37
Trigger	n/a	n/a	1	0	0.08	0.06
Statistical Uncertainty	0.90	1.47			0.36	0.25
Total Syst. Uncertainty	2.26	2.87			0.91	0.91
Total Uncertainty	2.43	3.23			0.98	0.94

Combination matrix: LHC

30/25

Uncertainty Categories				Size [GeV]						
			AT	LAS		CMS		LHC	Pexp	ρ _{LHC}
Tevatron	ATLAS	CMS	2011	2011	2011	2011	2011			
			l+jets	di-l	l+jets	di-l	all jets	comb		
Measured m _{top}			172.31	173.09	173.49	172.50	173.49	173.29		
	Jet Scale Factor	Jet Scale Factor	0.27		0.33					
	bJet Scale Factor		0.67							
iJES	Sum	Sum	0.72		0.33			0.26	0	0
	uncorrelated	i JES comp.	0.61	0.73	0.24	0.69	0.69	0.29	1	0
dJES	in-situ γ/Z	JES comp.	0.29	0.31	0.02	0.35	0.35	0.10	1	0
	intercalib.	JES comp.	0.19	0.39	0.01	0.08	0.08	0.07	1	0.5
aJES	flavour JI	ES comp.	0.36	0.02	0.11	0.58	0.58	0.16	1	0.0
bJES	b-jet ener	gy scale	0.08	0.71	0.61	0.76	0.49	0.43	1	0.5
	MC Generator	MC Generator	0.19	0.20	0.02	0.04	0.19			
	Hadronisation		0.27	0.44						
MC	Sum	Sum	0.33	0.48	0.02	0.04	0.19	0.14	1	1
Rad	ISR/FSR	ISR/FSR	0.45	0.37						
		Q ² -scale			0.24	0.55	0.22			
		Jet-Parton scale			0.18	0.19	0.24			
	Sum	Sum	0.45	0.37	0.30	0.58	0.33	0.32	1	1
	Colour reconnec	tion	0.32	0.29	0.54	0.13	0.15	0.43	1	1
	Underlying eve	ent	0.12	0.42	0.15	0.05	0.20	0.17	1	1
	Proton PDF		0.17	0.12	0.07	0.09	0.06	0.09	1	1
	Jet Resc	olution	0.22	0.21	0.23	0.14	0.15			
	Jet Reco E	fficiency	0.05							
	E ^m	iss	0.03	0.05	0.06	0.12				
DetMod	Sum	Sum	0.23	0.22	0.24	0.18	0.28	0.20	1	0
	b-tagging		0.81	0.46	0.12	0.09	0.06	0.25	1	0.5
LepPt	Lepton reco	Instruction	0.04	0.12	0.02	0.14		0.01	1	0
	Background from	MC		0.14	0.13	0.05		0.08	1	1
Background from Data			0.10				0.13	0.04	0	0
Method			0.13	0.07	0.06	0.40	0.13	0.06	0	0
Multiple Hadronic Interactions			0.03	0.01	0.07	0.11	0.06	0.05	1	1
Statistics			0.23	0.64	0.27	0.43	0.69	0.23		
Systematics			1.53	1.50	1.03	1.46	1.23	0.92		
Total Uncertainty			1.55	1.63	1.06	1.52	1.41	0.95		
		Comb. Coeff.[%]	22.6	3.6	60.6	-8.4	21.6	χ^2/ndf	= 1.8/4	
		Pull	-0.80	-0.15	0.41	-0.67	0.19	χ^2 prob = 77%		