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Introduction: LHC schedule

2022
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Period Lumi [em=2s~1 ] | pile-up | Lins (67 1)
2012 7-10%3 21 25
2015-2017 1-1034 25 90
2019-2021 2.1034 50-80 300
2022- 5. 1034 ~ 140 3000

Pile-up corresponds to the average number of interactions per bunch
crossing ((1)).
Aiming to collect 90fb~! at 13-14 TeV by LS2!
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Effects of pile-up
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Top physics uses all types of objects in the events, which requires high
performance of the reconstruction and identification algorithms.

Need to understand how high pile-up affects performance at high luminosity and
how to deal with potential degradation.

@ trigger: needed to retain ~ current trigger thresholds with higher rates.
@ lepton isolation affected.

© additional jets from pile-up interactions present in events.

©Q b-tagging: primary vertex mis-id, pile-up tracks, fake tracks.

© Jet performance: need to subtract pile-up energy (~1 GeV per vertex for
R = 0.6 jets); noise term larger = degradation in jet resolution. 4/ 33



High pile-up environment

Zup event seen by ATLAS in 2012 data, with 25 vertices.

The ATLAS and CMS detectors implementing a number of hardware
upgrades to cope with high pile-up - Phase 0 upgrades in LS1 (now),
in LS2 (2018); Phase Il in 2022.
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Jets at high pile-up
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At very high luminosity, jet pr thresholds may need to be increased to suppress

pile-up jet contamination. Worsening in jet resolution due to local fluctuation of

pileup activity.
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Importance of new algorithms

Many new techniques under investigation in ATLAS and CMS.
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CMS will use multivariate discriminator (jet shape, multiplicity of neutral
and charged components etc)+ HCAL upgrade. Pile-up subtraction

reduces mean number of pile-up jets per event.
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Boosted jet techniques for pile-up suppression

Particularly relevant to boosted top jets - many new ideas and techniques.
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For both CMS and ATLAS, planned upgrades and algorithm improvements
compensate for the worsening in perfomance due to more challenging
conditions (pile-up, luminosity).

Reasonable to extrapolate current results to high luminosities (300-3000
fb~1).
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Parton luminosities and ¢t production

The dominant part of the pp — X production cross section tends to come from
luminosity term,

o) = / S S, My, M)

WJs2012
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ratios of LHC parton luminosities: J,’ f‘
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Cross sections of processes dominated by gg — X grow faster than those of ¢q¢ — X.

The biggest gains are for high final state mass processes: factor of O(100) gains for

i- |
multi-TeV masses! 0/ 33



Cross section ratios: 14 TeV to 8 TeV

Cross Section ‘ RBonnpdt ‘ oppr(%) ‘ Oay (%) ‘ Oscates (%)

tt/Z 212 +13 [ -08-08] —04-11

tt 3.90 +11 | -05-07 | —-04-1.1

Z 1.84 +07 | -01-03]| —-03-02

wt 1.75 +07 | -00-03]| -03-0.2

W™ 1.86 +06 | -01-03| -03-0.1

W+ /W= 0.94 +03 -0.0-0.0 | —0.0-0.0
w/zZ 0.98 +01 | -01-00| -0.0-0.0

ggH 2.56 +06 | -01-01]| —-09-10
tt(My > 1 TeV) 8.18 +25 | -13-11| -16-21
tt( My > 2 TeV) 24.9 +63 | -00-03| —-3.0-1.1
gies(pT > 1 TeV) 15.1 +21 | -04-00| —-1.9-24
gies(pr > 2 TeV) 182 +77 | -03-02| -57-4.0

(from Mangano, Rojo, JHEP 1208 (2012))

Cross sections in tails increase by a lot - careful with extrapolations using
overall cross section scaling!
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Cross sections at 14 TeV

Process o (14 TeV) [in pb] Reference
tt 953.6 + 38 Czakon et al, Phys.Rev.Lett. 110 (2013) 252004
s-channel single ¢ 119+ 04 Kidonakis, Phys.Rev. D81 (2010) 054028
t-channel single ¢ 243 £ 6 Kidonakis, Phys.Rev. D83 (2011) 091503
Wit-channel single ¢ 82.4

Kidonakis, Phys.Rev. D82 (2010) 054018

Top pair and single top production cross sections at 14 TeV.

With 300 fb~" at 14 TeV, produce roughly 250 million ¢Z and 100 million single

top events.
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Prospects of new and existing measurements for 14 TeV

Roughly 6 million ¢t events produced during /s =8 TeV run = most
measurements already limited (/will soon be limited) by systematics -
cross section (top and single top), mass measurements, spin correlation...

Systematics usually of tricky kind: generator, PDF, shower modelling,
ISR/FSR. Constraining them will take time, even with much more data.

However, all searches and some measurements directly benefit from
increased energy and luminosity:

searches for FCNC decays

searches for resonances decaying to t¢ pairs
searches for stops

mass measurements

measurement of ttV.V =W, Z,~

©0 000
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Prospects for FCNC searches

Different possibilities: ¢t — Zq,t — q7v,t — qg,t — hg.

The best current limits just starting to probe the < 1072 range:
@ BR(t — qZ) < 0.07% at 95% CL (cms, TOP-12-037, 195/ 1 at /5 = 8 TeV)
@ BR(t — cg) < 1.6 - 107 (ATLAS CONF2013.063, /5 = 8 TeV)

@ BR(t — cH) < 3.1-1073 (5U5-13-002; also ATLAS-CONF-2013-063, both /5 = 8§ TeV)

The interesting range is however below this - Randall-Sundrum, 2DHM, (RPV) SUSY
and other BSM model values typically expected to be 107° — 1074, or less.

Performing searches in all the possible channels is important, since different models
predict different FCNC branching ratios.

Process SM Qs 2HDM FC2HDM MSSM R SUSY TC2
t—uy 37x107% 75%x107° — 2x 1070 1x107°

t—-uZ 8x10°7  lLix10*t  — — 2x 107 3% 1073 —
t—ug 37x10°% 15x1007  — — 8x107° 2x 1074

t—=ey 46x10°% 75x10°% ~10°° ~10°  2x10° 1x10® ~10°°
t—cZ 1x100% 1ix10* ~107  ~107% 2x10® 3x107° ~ 107t
t—cg 46x1077 15%x107 ~10*  ~10%  8x107 2x10t ~107t




Prospects for FCNC searches

Extrapolation of existing CMS results indicates that sensitivity with 300 fb~! will go

down to O(107°).

ATLAS sensitivity for t — Zq and t — ¢ expected to be 107° —10™* (10™* — 107%)
for 3000fb~" (300fb™1).
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Ditop resonances

Prospects for the 14 TeV LHC for resonances decaying to tt have been studied by
ATLAS (ATLAS-PHYS-PUB-2013-003, arXiv:1307.7202).

Considered broad (KK gluon, gx k) and narrow (topcolor Z’) resonances;
detector parametrisations used for very high pile-up expected at the HL-LHC.

anti-k; jets with R = 0.4 and R = 1.0, with py cuts of 25 GeV and 250 GeV,
respectively. Leptons (e or u) with pr > 25 GeV.

Single lepton selection: Dilepton selection:
@ exactly one lepton which @ exactly two opposite sign
fires the trigger leptons (my; outside the (81

GeV, 101 GeV) window, if

@ at least one b-tagged
. same flavour)

R = 0.4 jet, and one

R =1.0 jet with mje > 120 @ at least two b-tagged
GeV R =04 jets
@ K1 > 50 GeV o Fr > 60 GeV
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Ditop resonances
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Topcolor Z’ in the I+jets channel with 3000 fb™" at 14 TeV.

model | 300 fb~T | 1000 fb—T [ 3000 fb~!
IKK 43(40) | 56 (49) | 6.7 (5.6)

Z} peotor | 33 (18) | 45 (2.6) | 55(3.2)

Expected limits in absence of signal, in TeV for the 14 TeV LHC, for the [+jets
(dilepton) channels. Current limits 2-2.5 TeV.
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Prospects for stop searches

Natural SUSY motivates light left and right handed stops, left handed sbottoms
and, to a lesser extent, gluinos.
CMS considered the prospects of the 17 analysis (scenario A: scale background

uncertainty from 20fb™!, scenario B: assume it reduces by 1/1/L1/Lo); ATLAS
studied 1/ and 2[ analyses.
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E 500 [ Estimated 55 discovery reach _ i £F 800+ 3000 o exoosion dsve 6L =11 B (M, > m): Tlepton (e + jets
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E P e E E — 3001 dicovery reach o b (m -,
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Discovery reach up to 800-1000 GeV in m;. Shape and angular correlation
techniques as well as use of boosted objects expected to improve reach
considerably.
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Mass measurements

New techniques whose systematics often different from more “conventional”
methods. Some already done: measurement of m; via transverse decay length
(Ly) of B-hadrons in ¢t events, or via endpoint in my; distribution.

Lint=5.01b"" E5=7TevV cMS
e
1400F s 3
1200) ¢ ii} 2
r G 40
[T
=000k ¢ ¥ ix
O ¢ 160 180 200 220 240
Channel m; [GeV ] 0 800f & Moy (@oV)
muon-+jets 173.2 £ 1.0stat £ 1.6yst £33, 1) ‘2 00k
electron+jets 172.8 & 1.0stat £ 1.76yst £ 3.1, (1) 5 &
electron-muon  173.7 &= 2.0t = 1Agyst + 2.4’,.[“) 400
.
I o
50 100 150 200 250

Eur.Phys.). C73 (2013) 2494 M, [GeV]

Eliminate dependence on jet physics (and uncertainties) as much as possible:
lepton pr spectrum, or t — b — J/1p — ptp~ decays (cms, CERN/LHCCCO2-3; Kharchilava,

Phys. Lett B476 (2000),73).
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Top mass from ¢t — b — J/U — p*pu~ decays

Branching ratio for the required final state topology is low, ~ 1075,

I~ 80
2 [ CMS preliminary, 19.8 b , 5 =8 TeV 1+ jets channel
I o 60° preliminary, 5=8Te +
. =} r ® Data
52 [ o O 1T (PY6)+BG
o M7y =051 M, - 23 > 50~ W
/ i< E I tt others (MG)
py> 15GeV, Inl < 2.4 [ 40 B single top
3 > n
r B> 4 Gev L E Dibosons
60 — r
[ 30} W zy >
[ Wl
L 20F
50 - M= 0.37 My —16 r
R pi> 15 Gev, Inl < 2.4 10
P> 10 GeV r
T3 A N I | 0
170 175 180 185 0 01020304 0506070809 1
M (GeV JIy)/p_(nearest jet
Kharchilava, Phys. Lett B476 (2000),73 o ( ) pT< ‘V) pT< J )

Good correlation/linearity between m; and m;;,y (~ 2). Slope for my,, similar.
Dominant systematic from modelling of b fragmentation - expect < 1 GeV
ultimate precision, complementary to existing measurements using jets.

Other methods: m; via differential x-sec measurements - need theoretically well

understood shapes (see talk by J. Fuster). 1933



ttV(V =W, Z) and tZ + tZ processes

T T T T T T T T T
Top pair and single top cross sections

with and without accompanying Z

tt

|

___———t (t—channel)
S % (t—channel)

— Campbell et al, Phys.Rev.
D87 (2013) 114006

o[fb]
5

T T Ty

ti+z
———t+Z (t-channel)
___————HtZ (t-channel)

7 8 9 10 11 12 13 14 15 16
Vs[TeV]

Large final state mass = large gain in cross section when /s increased. tZ +tZ
cross section larger by a factor of 4 at 14 TeV compared to 8 TeV. =~ 1 pb cross
section; cross section of ttZ comparable to tZ + tZ.

Backgrounds are rare SM processes, e.g. W Zbb-+jets; in addition, tZ +1Z is a
background to ¢tV (V = W, Z). Relatively little is known about these processes.

ttV,tZ are important backgrounds in a number of BSM searches, especially for

naturalness motivated models involving multiple leptons, b-tagged jets and Fr.
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ttZ searches/cross section
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T T ]

a8 T T T T

2 ]

E ® Data E ATLAS Preliminary o data
=i ] m
Bz E j Ldt=471b"Ns = 7 TevIl ZZ+jets
Dz ] [Cw
o=« - I WZ+jets
[ Diboson M (t6Z+102)+X

[CJother

(ee)e  (eeu (mwe  (upn aas

CMS-TOP-12-014 Channel
ATLAS-CONF-2012-126

Both analyses in trilepton channel. Handful of events expected in both
cases (1-4). Will benefit a lot from increase in cross section and
luminosity! With 100fb™! at 14 TeV, expect hundreds of events.

21 /33



ttV cross section
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CMS measures the ttV cross section in the dilepton channel - both

HW — (blv)(bj§)(I'V") and t8Z — (blv)(bjj)(I'T1'") contribute here. With more
statistics, the two processes can be separately measured. Good understanding of
backgrounds crucial (data driven).
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tZ at NLO

A good uncertanding of rare processes very important; at LO, t + Z events have up to

two jets, and are clearly separated from t£Z in jet multiplicity:

0.6

o [fb]

0.4

0.2

0

1z =9
[ e

0

1

Campbell et al, Phys.Rev. D87 (2013) 114006

2
Jet multiplicit

3 4

y

However, at NLO, almost 50% of the cross section is in the 3-jet bin (Cambpell et al)!

Jet multiplicity 0 1 2 3 -
o(tZ +tZ7) LO | 0.014 | 0.331 | 1.05 -
oc(tZ +17) NLO | 0.011 | 0.237 | 0.585 | 0.693

This is t-channel; no results for Wit-channel single t + Z.
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Constraining top couplings with ttZ
Can study the structure of ¢tV couplings (Baur et al (hep-ph/0412021)):
0V (k% ¢, @) = —ie {m (Fiv (%) + 15 FYa (7)) + ?Tt @+ (iF2y (%) +W5F§A<k2>)}

Deviations from SM values of the couplings can be observed in the pr(v, Z)
distributions.

For ttZ, obtain pure sample (S/B 2 10) with
@ mz — 10 GeV < m(ll) < myz + 10 GeV
[} mT(bLgﬁ;yﬂT) < my + 20 GeV,mt —20 GeV < Wl(bgvljj) < my + 20 GeV

After these cuts, signal cross section is 2.25 fb before detector effects/object
efficiencies. ATLAS/CMS studies indicate similar cross sections for their
respective selections, while maintaining reasonable S/ B ratios.
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Determination of EW couplings of the top

A similar strategy can be used for the top couplings to the photon.

T T
pp = Hrbbjj 100 T T

. AFY =1 Vs = 14 TeV pp-¢te by
z E o .
i o1 5 = 14 Tev
) £
£ 2

K]
3 g
g =
g S
5 &

o

g

3

b) R
1073 | L L Wzbbjj T
o 100 200 300 100 J]'Hq
Pi(r) (GeV) 1078 L
0 100 200 300 400

Baur et al, Phys.Rev. D71 (2005) 054013 pe(2) (GoV)
One can hope to determine the couplings of the top to v with better than ~ 35%

accuracy already with 30 fb~! at 14 TeV; couplings to the Z are more difficult but
coupling  30fb~1  300fb~! 3000 fb—!

AFY F0.23 F0.079 F0.037

0 1 10050 0018

can expect 20-50% precision with 300 fb='. ary, 317 00T R
AF’Y F0.39 +0.19 F0.12

2V —0.35 —0.20 —0.12

AF"/ F0.35 +0.19 F0.1T

2A —0.36 —0.21 —0.14




Yukawa coupling of the top

Important (due to role of top in EWSB) and difficult to determine due to low

o x BR: o(ttH) = 623 fb at 14 TeV (129 fb at 8 TeV); e.g.

BR(H — vv) ~ 2.3-1073. CMS considers two systematics scenarios. Scenario
1: systematics unchanged with respect to 8 TeV. Scenario 2: theory systematics

scaled by 1/2, other systematics reduced by 1/+/L1/Lo.

CMS Projection
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Conclusions

Lots of new and exciting top physics expected with the 13/14 TeV LHC.

Lots of work already underway - both on the hardware/object reconstruction
(detector upgrades, tackling difficult high luminosity/pile-up conditions,
development of new and improved reconstruction algorithms) and analysis fronts.

New measurements at 14 TeV: electroweak couplings of the top; the t + Z
process; new methods for top mass measurements, and many others.

Room for improvement in measurements dominated by systematics: MC tuning,
data driven methods, etc.

Synergy between theory and experiment - e.g. constraints of gluon PDFs from
top cross section. Commissioning latest-generation Monte Carlo tools
(MEPS@NLO, aMC@NLO, etc.) will benefit many measurements.

27 /33



Relative rejection

—_

o
o)

[}

I o
I o
T

o
(M)
T

b-tagging at high pile-up

3

TTTT

T

T ——T
ATL-PHYS-PUB-2013-004

ATLAS Preliminary
Simulation

I SEIIN BRRIN AV

TR R

OO

. ‘20. .

40

60

80

P RN B R
100 120 140
[

B-tagging Efficiency (%)

100 : : : :
E [ —m—— Current Detector: light quark mis-tag = 1% (a)
90— e Upgrade Detector: light quark mis-tag = 1%
gof_| —H—— Current Detector: light quark mis-tag = 0.1%
E = Upgrade Detector: light quark mis-tag = 0.1%
=
7 —
L3 —e_
60F =
 — ~9
U &
40| E B . e
e = e
30E .
20E -
10E ]
il E L L L L I I L L L L I I L
0 20 40 60 80 100

O

“MS NOTE-13-002

Average Pileup

Significant degradation expected at very high i - e.g. light jet rejection
worsens by up to a factor of ~ 2 (N B assuming the current detector -
Phase Il upgrades should ameliorate this significantly!).
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Backup: Differential cross sections

tt cross section has been measured as a function of myz, pir, ysr-

The uncertainties tend to be systematics dominated, even for large values

of myz, pir (due to choice of binning/unfolding procedure).
Very important to understand higher order effects on the theory side.
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(Approximate) NNLO seems gives best description of pr distribution. At
the moment, approximate NNLO calculations available for pp, y;7 (kidonakis,
arXiv:1205.3453) and mtf d|Str|bUt|OnS (Ferroglia et aI,arXiv:1306.1537).
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myz spectrum at approximate NNLO
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Relevant to resonance searches as well as differential cross section measurement.

Can we improve systematics in regions of interest (e.g. high m;z)? Ratios can be
important here (Mangano, Rojo 2013): considering the ratio of measured cross sections
at two different values of /s can (i) cancel theoretical systematics and (ii) enhance
sensitivity to BSM physics, if cross section of BSM process scales differently from #f -
true e.g. if production dominated by ¢q initial state.
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Backup: Other topics

Many other measurements interesting to look at from the 14 TeV LHC point of view.

@ gtt vertex: (g/2)G%,EH(T“0"" (1 + iv°d))t. Spin correlation measurements will
constrain p,d to < 1% (Bernreuther, Si 2013; Baumgart, Tweedie, JHEP 1303 (2013) 117).

@ Charge asymmetry - can benefit from more statistics in differential measurements:
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However, the asymmetry decreases at 14 TeV since gg — tt more important. Explore
new observables which can enhance the asymmetry (Berge, Westhoff arXiv:1307.6225, Aguilar-Saavedra

et al, Phys.Lett. B707 (2012)).
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A nice example is constraining on the gluon PDF from the top pair cross section
measurement (Czakon et al, arXiv:1303.7215). gg — tt is 85-90% of ¢t
production at LHC, depending on /s.

Works because other theory uncertainties (e.g. from renormalisation /factorisation

scales) very small (NNLO+NNLL!).

Ratio to NNPDF2.3 NNLO, o = 0.118 NNPDF2.3 NNLO + TeV,LHC Top Quark Data
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Can reduce high = gluon PDF uncertainties by ~ 20% with present

measurements.
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Many BSM model production cross sections suffer from large PDF uncertainties
(large mass = high ), e.g. uncertainty on gluino pair production cross section
with mz = 2 TeV is 32% at /s = 13 TeV. Finding ways of reducing these very
important.

Effect of including top cross section constraints in PDF fits on KK gluon
production:
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