<u>Inclusive top pair</u>

<u>states</u>

- Introduction
- Inclusive cross sections
- Conclusions & Outlook

Andreas Jung (Fermilab) for the CDF, DØ, ATLAS & CMS collaboration

VI. International Workshop on Top Quark Physics September 14-19, 2013, Durbach, Germany

Inclusive top pair production in e/μ final states

- CDF: dilepton decay channel CDF-CONF-10878, and [arxiv:1304.7961]
- D0: I+jets, dilepton
 I+jets (full Run II)

PRD 84, 012008 (2011), PLB 704, 403 (2011) D0-CONF-6379

- ATLAS: lepton+jets at 8 TeV ATLAS-CONF-2012-149
 Dilepton at 8 TeV NEW ATLAS-CONF-2013-097
- CMS: lepton+jets at 7 TeV, 8 TeV Phys. Lett. B 720 (2013) 83, CMS-PAS-TOP-12-006 Dilepton at 8 TeV CMS-PAS-TOP-12-007

Strong interaction: Top pairs

 Tevatron vs. LHC: (1.96 TeV
 7/8 TeV)

 qq: ~85%
 ~15/13% (~10%, 14 TeV)

 gg: ~15%
 ~85/87% (~90%, 14 TeV)

Inclusive top pair production in e/μ final states

Inclusive cross sections test QCD calculations and enhance our

understanding of top quark production:

- Recently all channels included
- Real <u>challenge to experiments:</u>
 - ~ 3.5 % for Tevatron
 - ~ 4.4 % (4.2%) for LHC 7 (8) TeV

(Czakon, Fiedler, Mitov); Phys. Rev. Lett. 110, 252004 (2013) [arxiv:1303.6254]

Collider	$\sigma_{\rm tot} \ [{\rm pb}]$	scales [pb]	pdf [pb]
Tevatron	7.164	+0.110(1.5%) -0.200(2.8%)	+0.169(2.4%) -0.122(1.7%)
LHC 7 TeV	172.0	+4.4(2.6%) -5.8(3.4%)	+4.7(2.7%) -4.8(2.8%)
LHC 8 TeV	245.8	+6.2(2.5%) -8.4(3.4%)	+6.2(2.5%) -6.4(2.6%)

Search for new physics contribution

 <u>Remark</u>: Experimental determination of cross sections use theory predictions at tree or NLO for extrapolation

√s=1.96 TeV

- Peak luminosities: $3 4 \times 10^{32}$ cm⁻²s⁻¹
- ~10 fb⁻¹/experiment recorded
- Tevatron shutdown September 2011

- p _____ p
- Peak luminosities: 8 x 10³³ cm⁻²s⁻¹
- ~5 (25) fb⁻¹/experiment recorded
- LHC consolidation/upgrades till 2015

Big thanks to the Accelerator Divisions!

Inclusive top pair production in e/μ final states

A. Jung

Detectors

<u>General purpose 4π detectors:</u>

Tracker: Detection and momentum measurement for charged particles
Calorimeter: Identification and energy measurement of jets and electrons

• Muon system: Identification and momentum measurement of muons

Tevatron: Similar calorimeter and tracker coverages
 LHC: Increased coverage compared to Tevatron

Inclusive top pair production in e/μ final states

- Compare the observed number of events (N^{data}) with prediction
- Cross section is measured by <u>counting</u> events:

 $\sigma = (N^{data} - N^{bg}) / BR \cdot A \cdot \epsilon \cdot L$

• or by <u>maximizing Poisson likelihood</u> based on N^{data} using N^{pred}: $L(\sigma) = P(N^{data}, N^{pred})$

One of the most important experimental techniques "b-tagging":

b-quarks hadronize before decaying into a *c*-quark:

 → Long-lived *B* hadrons decay some mm away
 → Neural Network and/or Multi-Variate Analysis technique

Dilepton channel

[arxiv:1304.7961] CDF-CONF-10878

- 579 candidate events in 9.1 fb⁻¹ with 155 expected background evts
- 246 candidate events with b-tagged jets in 8.8 fb⁻¹ with 22 bg evts

► w/o b-tag: $\sigma(t\bar{t}) = (7.66 \pm 0.44 \text{ (stat)} \pm 0.52 \text{ (syst)} \pm 0.47 \text{ (lumi)}) \text{ pb} ~12.2 \%$ w b-tag: $\sigma(t\bar{t}) = (7.09 \pm 0.49 \text{ (stat)} \pm 0.52 \text{ (syst)} \pm 0.43 \text{ (lumi)}) \text{ pb} ~11.8 \%$

Most precise prediction at NNLO+NNLL (MSTW2008nnlo):

(Czakon, Fiedler, Mitov); Phys. Rev. Lett. 110, 252004 (2013) [arxiv:1303.6254]

jets final state in 5.3 fb⁻¹; PRD 84, 012008 (20

vents / 0.1

Ratio - 1

- Discriminant using topological information
- "Counting" by number of b-tags
- Combine both in likelihood fit (→ fit uncertainties)

<u>dilepton final state in 5.4 fb⁻¹:</u>

- Likelihood based on b-tagging discriminant distribution (→ fit uncertainties)
- Merges 2-jet events and 1-jet events (eµ only)

Septon+jets channel

- <u>Method</u>: Kinematic fit of top quarks, derived from differential cross section
 - \rightarrow see talk by Maria Aldaya
- <u>Event selection:</u>
 - e- or μ+jets-trigger
 - \geq 4 jets: p₁ > 20 GeV, $|\eta| < 2.5$
 - Reconstructed e or μ:
 p₁ > 20 GeV, |η| < 2.0 (< 1.1)
 - $E_T^{miss} > 20 \text{ GeV}$ & additional quality cuts
 - \geq 1 jet identified as *b*-jet
- Good data-MC agreement

 Dedicated analysis with reduced systematic uncertainties in progress

Summary at 1.96 TeV

- Single most precise:
 - ~ 7.1% (CDF)
 - ~ 9.3% (D0)
- Further reduction by combination:
 → see Talk by Serban
 - , Protopopescu

• Most precise prediction at NNLO+NNLL (MSTW2008nnlo): $\sigma_{\text{tot}}^{\text{res}} = 7.24^{+0.23}_{-0.27}(\text{scales} + \text{pdf}) \text{ pb}$ ~ 3.5 %

- <u>Method:</u> Maximum profile likelihood fit for N_{jet}, N_{tagg} and secondary vertex mass (SVM)
 Sensitive to HF contributions
- <u>Event selection:</u>
 - Single e- or μ-trigger
 - \geq 1 jets: p₁ > 35 GeV, $|\eta| < 2.4$
 - Reconstructed e or μ : $p_T > 35 \text{ GeV}, |\eta| < 2.5 (< 2.1)$
 - $E_T^{miss} > 20 \text{ GeV}$ & additional quality cuts
 - \geq 1 jet identified as *b*-jet

lepton+jets at 7 Te

data

- Method: Maximum profile likelihood fit for N_{iet} , N_{taaa} and secondary vertex mass (SVM) Sensitive to HF contributions
- Event selection:
 - Single e- or μ-trigger
 - \geq 1 jets: p₁ > 35 GeV, $|\eta| < 2.4$
 - Reconstructed e or μ : p₁ > 35 GeV, |η| < 2.5 (< 2.1)
 - $E_{T}^{miss} > 20 \text{ GeV}$
 - \geq 1 jet identified as *b*-jet
- Theory prediction: [arxiv:1303.6254] $\sigma(t\bar{t}) = 172.0^{+4.4}_{-5.8}$ (scale) $^{+4.7}_{-4.8}$ (pdf) pb

Phys. Lett. B 720 (2013) 83

Single Top

W+b-jets

QCD

 $\sigma(t\bar{t}) = (158.1 \pm 2.1(stat) \pm 10.2(syst) \pm 3.5(lumi)) \text{ pb}$

5 0

Secondary Vertex Mass (GeV)

W+b-jets

data

tŦ

Single Top

5.0 Secondary Vertex Mass (GeV)

- Further reduction by combination
 - \rightarrow see Talk by Serban Protopopescu
- Most precise theory prediction by Czakon et al.: ~ 4.4 %

lepton+jets at 8 TeV

- <u>Method</u>: Template fit to M_{IL}
- invariant mass distribution
- <u>Event selection:</u>
 - Single e- or μ-trigger
 - \geq 4 jets: $p_{T}(1,2) > 45 \text{ GeV}$,

 $p_{T}(3,4) > 35 \text{ GeV}, |\eta| < 2.5$

• Reconstructed e or μ :

p₁ > 30 (26) GeV, |η| < 2.5 (< 2.1)

• \geq 1 jet identified as *b*-jet

$\sigma(t\bar{t}) = (228.4 \pm 9 \text{ (stat)})$	^{+29.0} -26.0 (syst)
± 10 (lumi))pb	~13%

Systematic	Combined fit	
	$\delta \sigma_{t\overline{t}}$	(%)
Jet Energy Scale	+4.3	-5.0
Jet Energy Resolution	+0.5	-1.1
Pileup	+0.7	-0.7
Background Composition	+0.1	-0.1
W + Jets template shape from unweighted 7 TeV	+0.9	-0.9
Normalisation of data-driven multijet shape	+0.9	-0.9
b tagging efficiency measurement	+8.0	-8.0
Trigger Efficiency	+3.2	-2.8
Lepton selection	+2.8	-2.4
Factorization scale (*)	+6.2	-2.1
ME-PS Matching threshold (*)	+4.6	-3.1
PDF uncertainties (*)	+1.6	-2.0
Top Quark Mass (*)	+0.3	-1.4
Total	+12.7	-11.4
Luminosity	+4.4	-4.4

dilepton at 8 TeV

- Extremely clean, very high purity
- Method: Counting
- <u>Event selection:</u>
 - Single e- or μ-trigger
 - \geq 2 jets: p₁ > 30 GeV, $|\eta| < 2.5$
 - Reconstructed e or μ: p_T > 20 GeV, |η| < 2.5 (< 2.4)
 for ee, μμ: |m(II-Z)| > 15 GeV

 E_T^{miss} > 40 GeV (ee, μμ)
 - \geq 1 jet identified as *b*-jet

Source	μμ	ee	eμ
Trigger & Lepton efficiencies (ID, Iso)	2.2	2.5	1.9
LES	0.3	0.3	0.3
JES	3.5	2.9	2.3
JER	1.7	1.4	1.7
B-tagging	0.9	1.3	0.8
pileup	1.5	1.9	1.4
Branching ratio	1.7	1.7	1.7
Event Q^2 scale	0.7	0.7	0.7
Matching	0.7	0.7	0.7
Total Systematic	5.2	5.1	4.3
Luminosity	4.4	4.4	4.4

Theory prediction: [arxiv:1303.6254] $\sigma(t\bar{t}) = 245.8^{+6.2}_{-8.4}$ (scale) $^{+6.2}_{-6.4}$ (pdf) pb

 $\sigma(t\bar{t}) = (227 \pm 3 \text{ (stat)} \pm 11 \text{ (syst)} \pm 10 \text{ (lumi))pb} \sim 7\%$

<u>lepton+jets at 8 TeV</u>

 Method: <u>kinematic fits with</u>
 <u>b-tagging</u>, fit to likelihood discriminant (lepton η, Aplanarity A'):

$$D_i = \frac{L_i^s}{(L_i^s + L_i^b)}$$

- <u>Event selection:</u>
 - Single e- or μ-trigger
 - \geq 3jets: $p_{\tau} > 25 \text{ GeV}, |\eta| < 2.5$
 - Reconstructed e or μ : $p_{\tau} > 40 \text{ GeV}, 2^{nd} \text{ e} (\mu) \text{ vetoed}$
 - E_{T}^{miss} > 30 (20) for e (µ) GeV &
 - $\rightarrow e: M_T(W) > 30 \text{ GeV}$
 - $\rightarrow \mu$: (M_T(W) + E_t^{miss}) > 60 GeV
 - \geq 1 jet identified as *b*-jet

& additional quality cuts

A. Jung

ATLAS-CONF-2012-149

lepton+jets at 8 TeV ATLAS-CONF-2012-149

 Method: <u>kinematic fits with</u> <u>b-tagging</u>, fit to likelihood discriminant (lepton η, Aplanarity A'):

$$D_i = \frac{L_i^s}{(L_i^s + L_i^b)}$$

- Discriminant nicely described
- Systematic uncertainties:
 - Relative 13%, dominant ones:
 - \rightarrow Signal model

A. Jung

 \rightarrow Jet/MET reco. & calib.

$\sigma(t\bar{t}) = (241 \pm 2 \text{ (stat)} \pm 3)$	31 (syst)
± 9 (lumi))pb	~13%

Source	$e+\geq 3$ jets	$\mu + \ge 3 jets$	combined
Jet/MET reconstruction, calibration	6.7, -6.3	5.4, -4.6	5.9, -5.2
Lepton trigger, identification and reconstruction	2.4, -2.7	4.7, -4.2	2.7, -2.8
Background normalization and composition	1.9, -2.2	1.6, -1.5	1.8, -1.9
b-tagging efficiency	1.7, -1.3	1.9, -1.1	1.8, -1.2
MC modelling of the signal	±12	±11	±11
Total	±14	±13	±13

- Extremely clean, very high purity
- <u>Method</u>: simultaneously determine σ(tī) and the efficiency to reconstruct & *b*-tag jets

$$N_1 = L\sigma_{t\bar{t}} \epsilon_{e\mu} 2\epsilon_b (1 - C_b \epsilon_b) + N_1^{bkg}$$

$$N_2 = L\sigma_{t\bar{t}} \epsilon_{e\mu} C_b \epsilon_b^2 + N_2^{\rm bkg}$$

ATLAS-CONF-2013-097

- $\epsilon_{e\mu}$ Efficiency to pass eµ preselection
- $€_b$ Combined probability for a jet from t → Wq to be within acceptance, reconstructed as jet and *b*-tagged
- C_b Correlations between two b-tagged jets

- Extremely clean, very high purity
- <u>Method</u>: simultaneously determine σ(tt) and the efficiency to reconstruct & *b*-tag jets

$$N_{1} = L\sigma_{t\bar{t}} \epsilon_{e\mu} 2\epsilon_{b}(1 - C_{b}\epsilon_{b}) + N_{1}^{bkg}$$
$$N_{2} = L\sigma_{t\bar{t}} \epsilon_{e\mu} C_{b}\epsilon_{b}^{2} + N_{2}^{bkg}$$

→ reduces related systematic uncertainties !

- Event selection:
 - Single e- or μ-trigger
 - \geq 1 jets: p₁ > 25 GeV, $|\eta| < 2.5$
 - Reconstructed e and μ with $p_{\tau} > 25$ GeV, $|\eta| < 2.5$
- I or 2 jets identified as b-jet

A. Jung

ATLAS-CONF-2013-097

- $\epsilon_{e\mu}$ Efficiency to pass eµ preselection
- ϵ_b Combined probability for a jet from $t \rightarrow Wq$ to be within acceptance, reconstructed as jet and *b*-tagged
- C_b Correlations between two b-tagged jets

dilepton (eµ) at 8 TeV \sim

Extremely clean, very high purity
 <u>Method:</u> simultaneously determine σ(tī) and the efficiency to reconstruct & *b*-tag jets

$$N_1 = L\sigma_{t\bar{t}} \epsilon_{e\mu} 2\epsilon_b (1 - C_b \epsilon_b) + N_1^{bkg}$$

- $N_2 = L\sigma_{t\bar{t}} \epsilon_{e\mu} C_b \epsilon_b^2 + N_2^{\rm bkg}$
- → reduces related systematic uncertainties !
- Event selection:
 - Single e- or μ -trigger
 - \geq 1 jets: p₁ > 25 GeV, $|\eta| < 2.5$
 - Reconstructed e and μ with $p_{T} > 25$ GeV, $|\eta| < 2.5$
- I or 2 jets identified as b-jet

ATLAS-CONF-2013-097

80 100 120

0 20 40 60

80 100 120 140

160

Muon p_ [GeV]

180 200

0 20 40 60

180 200

140 160

Electron p₊ [GeV]

dilepton (eµ) at 8 TeV \sim

Uncertainty	$\Delta \epsilon_{e\mu} / \epsilon_{e\mu}$	$\Delta C_b/C_b$	$\Delta \sigma_{t\bar{t}} / \sigma_{t\bar{t}}$	$\Delta \sigma_{t\bar{t}}$	$\Delta \epsilon_b / \epsilon_b$
	(%)	(%)	(%)	(pb)	(%)
Data statistics	_	-	0.72	1.7	0.57
<i>tī</i> modelling	0.91	-0.61	1.52	3.6	0.61
Initial/final state radiation	-0.76	0.26	1.23	2.9	0.37
Parton density functions	1.08	12	1.09	2.6	0.06
QCD scale choices	0.30		0.30	0.7	0.00
Single-top modelling		-	0.38	0.9	0.56
Single-top/tī interference	2		0.15	0.4	0.25
Single-top Wt cross-section	2		0.70	1.7	0.24
Diboson modelling	2		0.42	1.0	0.19
Diboson cross-sections	2		0.03	0.1	0.01
Z+jets extrapolation	2		0.05	0.1	0.02
Electron energy scale/resolution	0.43	0.01	0.48	1.1	0.03
Electron identification/isolation	1.28	0.00	1.42	3.4	0.05
Muon momentum scale/resolution	0.01	0.01	0.05	0.1	0.02
Muon identification/isolation	0.50	0.00	0.52	1.2	0.01
Lepton trigger	0.15	0.00	0.16	0.4	0.01
Jet energy scale	0.46	0.07	0.49	1.2	0.11
Jet energy resolution	-0.44	0.04	0.59	1.4	0.08
Jet reconstruction/vertex fraction	0.02	0.01	0.04	0.1	0.01
<i>b</i> -tagging	-	0.13	0.42	1.0	0.09
Pileup modelling	-0.30	0.05	0.28	0.7	0.05
Misidentified leptons	-	-	0.38	0.9	0.12
Total systematic	2.29	0.69	3.12	7.4	1.02
Integrated luminosity	-	-	3.11	7.4	0.11
LHC beam energy	-	-	1.70	4.0	0.00
Total uncertainty	2.29	0.69	4.77	11.3	1.17
			Last Contra and	 Remain the second s Second second seco	

Event counts	N_1	N_2
Data	21559	11682
Wt single top	2070 ± 220	360 ± 120
Dibosons	120 ± 90	3 ± 6
$Z(\rightarrow \tau \tau \rightarrow e\mu)$ +jets	210 ± 10	8 ± 1
Misidentified leptons	240 ± 70	110 ± 60
Total background	2640 ± 250	480 ± 140

Most precise measurement:

- 4.7 % uncertainty
- Dominant ones are:
 - → Signal model, e-ID, PDFs
 - \rightarrow Largest: Luminosity & beam
- Theory prediction: $\sigma(t\bar{t})$ (NNLO+NNLL):
 - 252.9^{+13.3}_{-14.5} pb
 - 5.5 % uncertainty
 - Includes scale, α_s and PDF

There is an uncertainty of 0.66% on the beam energy, translating to a 1.7% uncertainty on $\sigma(t\bar{t})$

 $\sigma(t\bar{t}) = (237.7 \pm 1.7 \text{ (stat)} \pm 7.4 \text{ (syst)} \pm 7.4 \text{ (lumi)} \pm 4.0 \text{ (beam energy)) pb}$

A. Jung

Inclusive top pair production in e/μ final states

Summary at 8 TeV

- Further reduction by combination
 - \rightarrow see Talk by Serban Protopopescu
- Most precise theory prediction by Czakon et al.: ~ 4.2 %

Conclusions

- Presented recent cross-section measurements at Tevatron & LHC
- <u>Tevatron:</u> \rightarrow Results are in **good agreement** with theory
- <u>LHC:</u>

- → All results at 7/8TeV are compatible between exp. and theory
- → High precision measurements @8 TeV despite the higher pile-up environment compared to 7 TeV
- → Most precise measurement to date in dilepton channel by ATLAS
- \rightarrow Challenging theory predictions

<u>Outlook:</u>

- Final results to come from Tevatron very soon
- More high precision results to come for LHC

lepton+jets at 8 TeV

	$e+\geq 3$ jets	$\mu + \geq 3$ jets
tī	31000^{+2900}_{-3100}	44000±4000
W+jets	5700 ± 2400	9000 ± 4000
Multijet	1900 ± 900	1100 ± 500
Z+jets	1400 ± 600	1200 ± 500
Single top	3260 ± 160	4610 ± 230
Dibosons	115± 6	158 ± 8
Total Expected	43000±4000	61000±6000
Data	40794	58872

lepton+jets at 7 TeV

Phys. Lett. B 720 (2013) 83

623	tt	Single t	W + b	W + c	W + LF	Z + jets	CQ^2	b-tag	JES	Mistag
tī	1.00	-0.13	-0.48	0.33	0.03	0.07	-0.07	-0.70	-0.81	0.00
Single t	-0.13	1.00	-0.52	0.04	0.03	-0.03	0.06	-0.08	0.09	-0.00
W + b	-0.48	-0.52	1.00	0.05	0.13	-0.16	0.27	0.26	0.42	-0.02
W + c	0.33	0.04	0.05	1.00	0.01	0.15	0.71	-0.38	-0.26	-0.02
W + LF	0.03	0.03	0.13	0.01	1.00	-0.19	0.21	-0.03	-0.05	-0.83
Z + jets	0.07	-0.03	-0.16	0.15	-0.19	1.00	0.23	-0.01	-0.10	0.01
C _{O²}	-0.07	0.06	0.27	0.71	0.21	0.23	1.00	-0.02	0.15	-0.02
b-tag	-0.70	-0.08	0.26	-0.38	-0.03	-0.01	-0.02	1.00	0.43	-0.02
JES	-0.81	0.09	0.42	-0.26	-0.05	-0.10	0.15	0.43	1.00	0.01
Mistag	0.00	-0.00	-0.02	-0.02	-0.83	0.01	-0.02	-0.02	0.01	1.00

Fit parameters	Electron + jets	Muon + jets	Combined
$\sigma_{t\bar{t}}$ (pb)	160.6 ± 6.6	164.2 ± 5.5	158.1 ± 4.1
Single top	1.05 ± 0.10	1.08 ± 0.10	1.17 ± 0.10
W + b jets	1.19 ± 0.35	0.95 ± 0.18	1.28 ± 0.16
W + c jets	1.54 ± 0.15	1.48 ± 0.05	1.55 ± 0.04
W + LF jets	0.20 ± 0.08	0.57 ± 0.07	0.52 ± 0.06
Z + jets	1.13 ± 0.29	1.08 ± 0.29	1.43 ± 0.29
c_{Q^2}	1.02 ± 0.16	0.94 ± 0.06	1.05 ± 0.05
b-tag	0.95 ± 0.01	0.97 ± 0.01	0.96 ± 0.01
JES	1.00 ± 0.02	0.98 ± 0.01	1.00 ± 0.01
Mistag	1.00 ± 0.10	1.00 ± 0.10	1.00 ± 0.10

<u>dilepton (eµ) at 8 TeV</u>

Vac

10

U.

1

MC

12000

10000

8000

6000

4000

2000

50

100

Data/MC

ATLAS Preliminary

s=8 TeV L=20.3 fb

ATLAS Preliminary

• Data 2012

□ tt Powheg+PY

VS=8 TeV L=20.3 fb1

Wt Z+jets

Diboson

Eake lepton

Powheg+PY

MC@NLO+HW Alpgen+HW

**** 200

250

Jet p_ [GeV]

A. Jung

Events / 0.25

5000

4000

3000

2000

1000

Data 2012

Z+jets Diboson

TT Powheg+PY

Fake lepton

Powheg+PY MC@NLO+HW