

Top quark pair production with taus or no leptons

Michele Gallinaro

LIP Lisbon

(on behalf of the CDF, D0, ATLAS and CMS collaborations)

Introduction
 Cross section measurements with taus
 All-hadronic cross section measurements

Michele Gallinaro -/ "Top pair production with taus or no lepton

Taus/jets in top quark decays

Channel	Signature	BR
Dilepton(e/µ)	ee,μμ,eμ + 2 <i>b</i> -jets	4/81
Single lepton	e,μ + jets + 2 <i>b</i> -jets	24/81
All-hadronic	jets + 2 <i>b</i> -jets	36/81
Tau dilepton	<i>e</i> τ, μτ +2 <i>b</i> -jets	4/81
Tau+jets	τ + jets + 2 <i>b</i> -jets	12/81

- Good fraction of all top quark decays
 - `Tau dileptons' have same rate as $\ensuremath{\textit{e}/\mu}$ dilepton channel
- Challenging (lower p_T than e or μ due to ν 's)
- Involves exclusively 3rd generation quarks and leptons
- Probe new physics processes

 $W^{+} \qquad v, \bar{q}^{'}$

2

Tau jet identification

- Taus decay 65% to hadrons (i.e. jets) and 35% to leptons
 - narrow jet with few tracks
 - leptonic tau decays are similar to prompt leptons (lepton \textbf{p}_{T} is softer, 3-body decay)

Hadronic tau decays

- Main background from jets/electrons
- Identified based on decay modes, charged hadrons, and ECAL deposits

• CMS: ``Hadron Plus Strips'' (HPS) algorithm

- hadronic tau decays are reconstructed with Particle Flow (PF)
- Uses photon conversion in tracker ($\gamma \rightarrow e^+e^-$)
- Combines PF EM particles (γ ,e[±]) in "strips"
- "strips" are combined with PF charged hadrons
- Individual decay modes are reconstructed
- Fake Rate ~3% for 70% efficiency

Tau jet identification (cont.)

- ATLAS tau-ID uses BDT
 - -Select jets with 1,2, or 3 tracks (p_T >1 GeV, lead track p_T >4 GeV)
- Remove overlap with muon or electron
- Remove electrons misidentified as τ_{had} with BDT
- Another BDT to separate τ_{had} and jets
- determine eff/misID from Z/W decays: –BDT medium (ATLAS): τ eff.~63%, fake ~ 3%
- tau ID eff uncertainty: 5-6%
- Efficiency vs pileup: small dependence

b-tagging

- Many algorithms deployed
- Good separation from light jets and c-jets
- Rely on long lifetime and high-mass of B-hadrons
- Relies on tracks with large impact parameter (IP)
 - Tracks ordered in decreasing IP significance (S_{IP}) (CMS)
 - Jet b-tagged if $S_{\rm IP}$ above threshold
 - For p_T =50-80 GeV, tag rate ~76% (mistag rate ~a few%)
- Similar for ATLAS:
 - IP3D: track weights based on $\rm S_{\rm IP}$
 - SV1 reconstruct inclusive displaced vertex
 - JetFitter: reconstruct multiple vertices along b-hadron line
 - Advanced NN

Operating points (CMS): (tuned at jet $p_T \sim 80$ GeV)

- Loose: 10% mistag
- Medium: 1% mistag
- Tight: 0.1% mistag

5

Tau+lepton final state

- Selection:
 - one isolated lepton (e/ μ)
 - OS tau
 - at least two jets (one b-tagged)
 - MET
- Determine τ fakes from data
 - Expected to be dominated by quark/gluon jets
 - Estimate from multi-jet/W+jets, BDT: use data

6

Tau fake rate

• Gluon jets have higher multiplicities and softer constituents

Alternative measurement: fit to BDT

Tau selection: use BDT to select τ_{had} vs jet vs elec

Measure cross section from fit to BDT

- Exploit SS sample in bkg estimate
- Signal and bkg templates from OS-SS distributions
 - gluon and b-bbar jet bkg contributions cancel out (approximately equal in OS/SS)
- Bkg: 0 b-jet selection to obtain fake τ_{had} template
 - Contribution of true τ_{had} evts is subtracted (MC)
 - Derived separately for 1- and 3-prongs
 - Apply MC correction for 0 b-jet to ≥1 b-jet extrapolation
- Signal: fit in ≥1b-tag data sample
 - Use fit to OS-SS BDT with signal+bkg templates
 - Shapes of templates are fixed

Cross section: tau+lepton channel

Reconstruct mass in ttbar events with taus • Fit number of signal and bkg events

Good agreement between measurements and predictions $\sigma_{t\bar{t}} = 186 \pm 13 \text{ (stat.)} \pm 20 \text{ (syst.)} \pm 7(\text{lumi.)} \text{ pb}$ ATLAS $\pm 13\%$ $\sigma_{t\bar{t}} = 143 \pm 14(\text{stat.}) \pm 22(\text{syst.}) \pm 3(\text{lumi.}) \text{ pb}$ CMS $\pm 18\%$

Tau dileptons and $B(t \rightarrow \tau v b)$

Tau+jets

- BR~15%
- Main background: QCD multi-jets, ttbar (all-had)
- Multi-jet trigger (+b or τ)
- Event selection:
 - –one τ_h (>40 GeV) and at least 4/5 jets
 - –≥2 b-tagged jets
 - -MET significance or MET
 - -lepton veto

CMS

Extract signal

fit number of tracks

- -3-component fit (tau/el, q-jet, g-jet)
- signal template from MC
 - -large bkg from misID electrons
- bkg template from sideband \mathbf{S}_{MET}
- good separation btw signal/bkg

Likelihood fit

fit number of tracks

- -3-component fit (tau/el, q-jet, g-jet)
- signal template from MC
 - -large bkg from misID electrons
- bkg template from sideband \mathbf{S}_{MET}
- good separation btw signal/bkg
- Binned likelihood fit of n_{track}
 - -soft constrain tau/ele and q-jet
 - stat unc determined from shape fit
 pseudo-expts to determine syst unc
- Calculate number of events and measure cross section

13

Neural network

Backgrounds

- -large QCD multi-jet bkg (~90%)
- -control sample from data (b-veto)
- -Other bkg from MC
- Training with simulated signal and multi-jet templates from data
- binned log-likelihood fit

Source	Events
Signal $t\bar{t} \rightarrow \tau_h + jets$	383 ± 29 (fit)
Multijet	2392 ± 29 (fit) ± 120 (syst.)
Other tī	151 ± 4 (stat.) ± 37 (syst.)
W + jets	$62 \pm 8 (\text{stat.}) \pm 14 (\text{syst.})$
Single top	41 ± 1 (stat.) ± 8 (syst.)
Z+jets	21 ± 2 (stat.) ± 4 (syst.)
Total backgrounds	2667 ± 31 (stat.) ± 127 (syst.)
Data	3050

Tau+jets final state

Tau+jets

- \bullet Measure m_{top} and ttbar cross section
- Use NN to reduce multi-jet bkg
- Training from multi-jet data
- Optimize signal significance: $S_{exp}/\sqrt{S_{obs}}$
- Binned likelihood fit
- Measure cross section from #events:

$$\sigma_{t\bar{t}} = 8.8 \pm 3.3(\text{stat}) \pm 2.2(\text{syst}) \text{ pb} \begin{array}{c} \text{CDF} \\ \pm 45\% \\ \text{o}_{t\bar{t}} = 6.9^{+1.2}_{-1.2}(\text{stat})^{+0.8}_{-0.7}(\text{syst}) \pm 0.4(\text{lumi}) \text{ pb} \\ \pm 22\% \\ \text{Michele Gallinaro - "Top pair production with taus or no leptons" - Top2013@Durbach - Sept. 14-19, 2013 \\ \text{Id} \\ \text{DO} \\ \text{Id} \\ \text{DO} \\ \text{Stat} \\ \text{$$

All-hadronic channel

- Fully hadronic final state
- BR~46%
- Main background: multi-jets
- Six jets and no leptons in the final state
- Rely on multi-jet trigger
- Event selection
 - –≥6 jets
 - -2 b-tagged jets, ε_{b} ~50-60%, mistag~0.1%
 - -Kinematic fit exploits the topology of ttbar events
 - -MET significance

Background and likelihood fit

- Reconstruct ttbar system from jets and fit with least χ^2 method
 - Reconstruct both W bosons
 - $-m_{top1}=m_{top2}$ are free parameters
 - b-jets are taken as b-quark candidates
- Take permutation with smallest χ^2
- Derive mass templates from selected events after kinematic fit
- Templates are inputs for likelihood fit for cross section measurement
 - Signal and background templates
 - Multi-jet template from data (no b-tag)
 - Signal fraction is a free parameter
- Measure cross section

All hadronic

Events

786741

 $21\,783$

3136

Fraction of $t\bar{t}$

0.02

0.18

0.41

- Large BR, but large bkg
- Select at least 6 jets
 - b-tagging reduces combinatorics
- Top cross section from unbinned maximum likelihood to the reconstructed top mass

Selection

At least 6 jets

Kinematic fit

At least two b-tags

- Multijet QCD is main background (from data)
 - Use same selection without b-tag req.
 - Re-weigh mass spectrum from anti-tagged sample

dominant syst.: JES, b-tag

Fit top quark mass (signal from generator, background data-driven)

 $\sigma(pp \rightarrow t\bar{t}) = 168 \pm 12 \text{ (stat.)} ^{+60}_{-57} \text{ (syst.)} \pm 7 \text{ (lum.) pb}$ $139 \pm 10 \text{ (stat.)} \pm 26 \text{ (syst.)} \pm 3 \text{ (lum.) pb}$ $CMS \pm 20\%$

All-hadronic @ Tevatron

Similar selections:

- Select events with ≥ 6 jets
- ≥1(2) b-tag CDF(D0)
- kinematics + NN
- Signal fraction ~12/15% (D0/CDF)

 $\begin{array}{ccc}
\text{CDF} & \pm 16\% \\
\sigma_{t\bar{t}} &= 7.2 \pm 0.5(\text{stat}) \pm 1.0(\text{syst}) \pm 0.4(\text{lum}) \text{ pb} \\
6.9 \pm 1.3(\text{stat}) \pm 1.4(\text{sys}) \pm 0.4(\text{lum}) \text{ pb} \\
D0 & \pm 28\%
\end{array}$

20

Is there a charged Higgs?

 If anomalous tau production in ttbar decays there may be contribution from charged Higgs

21

Cross section ratios

Combination of more channels

- Search for charged Higgs boson
- Use τ_{had} +lep and τ_{had} +jets final states – compare to eµ yields
- Search for anomalous decays

$$\mathcal{B}(t \rightarrow bH^+)$$

Charged Higgs (cont.)

- Search in τ_{had}+jet final state
 Light charged Higgs:
 - $t\bar{t} \rightarrow [H^+b] [W^-\bar{b}] \rightarrow [(\tau^+ + \nu_\tau)b] [q\bar{q}\bar{b}]$
- Heavy charged Higgs $gg \rightarrow [\bar{t}b] \ [H^+] \rightarrow [(q\bar{q}\bar{b})b] \ [\tau^+ + \nu_\tau]$

Summary

- Measurements involving taus or no leptons
- Sensitive to BSM searches
- Uncertainties dominated by systematics

⇒ Good agreement with SM expectations

Tau dilepton: systematic uncertainties

- Misidentified taus
 - 13% (10%) for $e\tau$ ($\mu\tau)$
- Tau ID
 - 6%
- JES/JER/MET
 - 6%
- b-jet tagging/mistag
 - 5%

- b-tagging
 8-9%
- ISR/FSR
 - 4-5%
- Tau ID
 - 3%
- JES/JER/MET - 2-3%

Tau+jets: systematic uncertainties

- JES
 - 11%
- τ_{had} ID - 9%
- Trigger
 - 7%
- τ_{had} energy correction
 – 7%
- output fit and MC stat
 - 8%

- ISR/FSR
 - 15%
- evt generator
 11%
- b-tagging
 9%
- Hadronisation model
 - 6%
- JES – 5%

All hadronic: systematic uncertainties

- JES
 - 10%
- Background
 9%
- b-tagging
 - 6%
- Total
 - 20%

- JES
 - +20/-11%
- b-tagging
 17%
- ISR/FSR
 - 17%
- Shower/hadron model
 - 13%
- Multi-jet trigger
 - 10%
- Total - +36/-34%

b-tagging performance

Tau identification

