

Single Top at Tevatron

Matteo Cremonesi

Single Top Quark Production

The top quark can be produced:

- in *tt* pairs through strong interaction;
- as single top via EW interaction.

Observed by CDF and DØ in 2009:

- T. Aaltonen, et al. [CDF collaboration], Phys. Rev. Lett. 103, 092002 (2009)
- V.M. Abazov et al. [DØ Collaboration], Phys. Rev. Lett. 103, 092001 (2009)

Two dominant processes:

- t-channel;
- s-channel.
 - Wt-channel has a small cross section at the Tevatron.

	$\sigma(pb)$
s-ch	1.05 ± 0.05 a
t-ch	2.08 ± 0.08 b
Wt-ch	$0.25\pm0.03~^{c}$
tī	7.08 ± 0.49 ^d

Theoretical cross sections at Tevatron considering $m_t=173 {
m GeV/c}^2$

^aN. Kidonakis, arXiv:1001.5034 ^bN. Kidonakis, arXiv:1103.2792 ^cN. Kidonakis, arXiv:1005.4451 ^dN. Kidonakis, arXiv:1205.3453

Single Top *t*-channel

- It has already been established by the LHC experiments^{1 2};
- The light-flavor jet is more forward:
 - \circ For a precise measurement, a good η coverage is required;

Matteo Cremones

¹ATLAS Collaboration, Measurement of the t-channel Single Top-Quark Production Cross Section in 0.70 fb⁻¹ pp Collisions $\sqrt{s} = 7$ TeV with the ATLAS detector, ATLAS-CONF-2011-101(2011)

²CMS Collaboration, Measurement of the t-channel single top quark production cross sec tion in *pp* collisions at $\sqrt{s} = 7$ TeV, CMS-TOP-10-008 (2011)

Single Top s-channel

- It has not been observed yet;
- Difficult at LHC;
 - $\sigma_{s-ch}^{SM} \cong$ 5 pb (\cong 5 × σ_{s-ch}^{SM} at Tevatron), $\sigma_{t-ch}^{SM} \cong$ 65 pb (\cong 30 × σ_{s-ch}^{SM} at Tevatron) at LHC 7 TeV.
- Deviations from SM prediction may indicate new physics, like the existence of a W' or of a charged Higgs boson³.

 $^{^{3}}$ T. M. P. Tait and C. P. Yuan, Single top quark production as a window to physics beyond the standard model, Phys. Rev. D 63 (2000) 014018.

Single Top at Tevatron

DØ :

- Basically one analysis that does everything:
 - s + t cross section measurement;
 - t-channel measurement;
 - First s-channel evidence⁴

CDF:

- Two statistically independent samples are analyzed:
 - \circ The $l\nu b\bar{b}$ sample:
 - The $\not\!\!\!E_T b \bar{b}$ sample:
 - Only large ∉_T and jets are required.
- *s* + *t* cross section measurements;
- Qptimzed s-channel searches:
 - Evidence of *s*-channel in the $l\nu b\bar{b}$ analysis.

°/19

⁴arXiv: 1307.0731 (submitted to PLB)

The Tevatron

- Collider $p\bar{p} \sqrt{s} = 1.96$ TeV
- Radius R = 1 km
- Two experiments: CDF and $\mathsf{D} \ensuremath{\emptyset}$

• Run II (2001–2011): $\sim 12 \text{ fb}^{-1} \text{ of } p\bar{p} \text{ collisions}, \sim 10 \text{ fb}^{-1} \text{ recorded by CDF}.$

 $^{6}/_{19}$

The CDF Detector

- Multipurpose detector, BØ interaction point at Tevatron
- Tracking system in magnetic field at 1.4 T
- Calorimeters
 - Electromagnetic and hadronic
 - Sampling
 - Projective towers
- Muon chambers
 - 4 layers of drift chambers
- Trigger system
 - Three levels of online selection

The DØ Detector

 $^{8}/_{19}$

- Multipurpose detector, DØ interaction point at Tevatron
- Tracking system
 - Silicon Microstrip Tracker
 - Central Fiber Tracker
- Calorimeters: Uranium/Liquid Argon
- Muon detectors
 - Drift chambers
 - Scintillation counters
- Trigger system
 - Three levels of online selection

Main Analysis Features/1

b-jet Identification

- Identify b-jet from u,d,s,c, and g jets;
 - reduces a lot of backgrounds.
- Features of *b*-hadron in *b*-jets:
 - Long lifetime
 - Large invariant mass
- Reconstruct a secondary vertex;
- Make use of the displaced tracks with large impact parameter;

DØ

• Multivariate *b*-ID.

CDF:

SecVtx, HOBIT^a.

^aJ. Freeman, T. Junk, M. Kirby, Y. Oksuzian, T. J. Phillips, F. D. Snider, M. Trovato, J. Vizan, and W. M. Yao, Nucl. Instrum. Methods Phys. Res., Sect. A **697**, 64 (2013).

Main Analysis Features/2

Multivariate Analysis

Since we are looking for a small signal in a very large background, we need to use **Multivariate Techniques**. Several Neural Networks (NN) with different purpose are employed in these analyses:

• QCD rejection, final discrimination between signal and backgrounds.

DØ analysis

Event selection:

- Only one high p_T isolated electron or muon: $p_T > 20 \text{ GeV}$
 - \circ electron: $|\eta| < 1.1$
 - muon: $|\eta| < 2.0$
- Two or three jets
 - \circ p_T > 20 GeV, $|\eta|$ < 2.5
 - The leading jet $p_T > 25$ GeV
- Missing transverse energy > 25 GeV
- $H_T > 120 \text{ GeV}$
 - $\circ H_T \text{ all jet } p_T + \text{lepton } p_T + \text{missing transverse energy}$

Signal & Background Simulation:

- Signals: CompHEP (NLO) + PYTHIA
- W + jets & top pair: ALPGEN + PYTHIA
 - Correct ALPGEN (LL) to NLO
 - e.g. a factor 1.9 for W + bb
- Multijet: Data with non-isolated lepton

 $^{11}/_{19}$

Strategy

Measure simultaneously tb and tqb signals without assuming the SM prediction for either. Then, integrate over σ_{tbq} and obtain a ID posterior p.d.f. of σ_{tb+tbq}

- Measure σ_{tb+tbq} without assuming the SM σ_{tb}/σ_{tbq}
- Use 2D posterior p.d.f.

Results

- $\sigma_{tb} = 1.10^{+0.33}_{-0.31}$ (stat+syst) pb
- $\sigma_{tbq} = 3.07^{+0.53}_{-0.49}$ (stat+syst) pb
- $\sigma_{tb+tbq} = 4.11^{+0.59}_{-0.55}$ (stat+syst) pb
- Expected *p*-values:
 - $^\circ~tb:~1.0~\times10^{-4}~(3.7~\text{SD})$
 - $tbq: 9.9 \times 10^{-10}$ (6.0 SD)
- Observed p-values:
 - tb: 1.0 ×10⁻⁴ (3.7 SD)
 - First evidence of single top s-channel.
 - $tbq: 6.1 \times 10^{-15}$ (7.7 SD)
- 0.92 < |Vtb| 1 at 95% CL

¹³/₁₉

CDF Measurements

Main features:

- *s* + *t* cross section measurement:
 - Employment of the SecVtx tagger;
- s-channel search:
 - All the tools developed for the VH analyses were migrated to the s-channel searches
 - The multivariate HOBIT tagger is used.
 - t-channel and WH/ZH are included as backgrounds.
- Multivariate analysis.

Model:

- s-/t-channel: POWHEG
- $\bullet~W/Z{+jets:}$ ${\rm ALPGEN},$ normalization from data
- tt, WW/WZ/ZZ, WH/ZH: Pythia

The parton showering is performed by PYTHIA.

QCD multijet is data-derived in both the analyses and validated in several control regions:

- $l\nu b\bar{b}$: data with no isolated leptons;
- *∉*_T *bb*: tag rate matrix.

s + t Cross Section Measurement in $l\nu b\bar{b}$

Last result (Moriond 2012 - CDF Conference Note 10793) with 7.5 ${\rm fb}^{-1}$ of CDF data.

Event Selection:

- 1 High-p_T lepton (p_T > 20 GeV/c);
- 2-3 jets with $E_T > 20~{
 m GeV/c^2}$ & $|\eta_{
 m det}| < 2.8;$
- At least one SecVtx b-tagged jet.

Results:

- $\sigma_{s+t} = 3.04^{+0.57}_{-0.53}$ (stat+syst) pb;
- $|V_{tb}| = 0.96 \pm 0.09 \text{ (stat+syst)} \pm 0.05 \text{ (th)};$
- Limit: |V_{tb}| > 0.78 at 95% C.L.;
- Measured c.s. from 2D fit s-ch Vs t-ch:
 - $\circ \ \ \sigma_{\rm S} = 1.81^{+0.63}_{-0.58} \ {\rm pb;} \ \sigma_{t} = 1.49^{+0.47}_{-0.42} \ {\rm pb.}$

s + t Cross Section Measurement in $\not \in_T b\bar{b}$

Last result (Moriond 2013 - CDF Conference Note 10979) with the full CDF dataset.

Event Selection:

- $\not\!\!\!E_T > 50$ GeV;
- 2-3 jets with $E_{\rm T}^{j_1}>35$ GeV, $E_{\rm T}^{j_2}>25$ GeV, $|\eta_{j_1/j_2}|<$ 0.9 central;
- 3 tagging categories:
- At least one SecVtx b-tagged jet.
- NN QCD multijet and $t\bar{t}$ vetos.

Result:

• $\sigma_{s+t} = 3.15^{+1.41}_{-1.43}$ (stat+syst) pb.

s-channel Search in $l\nu b\bar{b}$

Last result (DPF 2013 - CDF Conference Note 11025) with the full CDF dataset.

Event Selection:

- 1 High-p_T lepton (p_T > 20 GeV/c);
- Large ∉_T;
- 2 jets, $|\eta_{\rm jet}| < 2.0;$
- At least one HOBIT b-tagged jet.
- Multivariate QCD filter.

Results:

- $\sigma_{s-ch}^{obs} = 1.41_{-0.42}^{+0.44}$ (stat+syst) pb
- Observed p-value = 3.7 SD

Single Top s-channel in Lepton+Jets, CDF Run II Preliminary (9.4 fb⁻¹)

Single Top s-channel in Lepton+Jets, CDF Run II Preliminary (9.4 fb⁻¹)

Single Top s-channel in Lepton+Jets, CDF Run II Preliminary (9.4 fb -1)

s-channel Search in $\not \in_T b\bar{b}$

Last result (DPF 2013 - CDF Conference Note 11015) with the full CDF dataset.

Event Selection:

- 2-3 jets with $E_T^{j_1} > 25$ GeV, $E_T^{j_2} > 20$ GeV, $|\eta_{j_1/j_2}| < 0.9$ central;
- At least one HOBIT b-tagged jet.
- Multivariate QCD filter.

Result:

• $\sigma_{s-ch}^{obs} = 1.10^{+0.65}_{-0.66}$ (stat+syst) pb.

Summary

- All the DØ and CDF single top measurements are approved by the two collaboration;
- Ready to combine, high priority for the s-channel:
 - Both CDF and DØ showed and evidence for the s-channel;
 - The CDF s-channel combination is ready to be approved;
- The discussion between CDF and DØ for the Tevatron combination is on-going:
 - There is the possibility to have a combined s-channel result by October.
- The s-channel combination would be a legacy measurement from Tevatron.

1/19