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A pedagogical exposition of unfolding techniques in particle physics is presented. Building
on example analyses about top quark physics, the origin, the main building blocks and the
crucial challenges of inverse, ill-posed problems in particle physics are discussed.

1 Unfolding foundations

In particle physics unfolding is the ensemble of statistical techniques used to solve what is defined
as the inverse problem: infer an unknown distribution f(y) for a variable y from the measured
distribution g(s) by using knowledge and/or assumptions on the probability distribution that
links the observation to the “true” value.

The mathematical foundations of unfolding are intimately related to the description of
the inverse problem provided by the Fredholm integral equation of the first type g(s) =∫

Ω
K(s,y)f(y)dy, where the true f(y) distribution of the variable y = (y1,..,yJ) is related

to the measured or observed distribution g(s) of the L-dimensional variable s = (s1,..,sL) by
the convolution with the kernel function K(s,y) over the subspace Ω of the J-dimensional
space where y is defined. An illustrative example, shown in the cartoon of Figure 1, is the
inversion of the measuring process for the invariant mass of the pair of top-antitop quarks (tt̄,
mtt̄) produced in proton-proton (pp) collisions at a center-of-mass energy (

√
s) of 7 TeV at the

Large Hadron Collider (LHC) and reconstructed by the ATLAS detector.
In the very common one-dimensional case, the measured and the true distributions are

approximated by histograms representing the values νi or µi, the expected number of counts in
a given interval of real variables s or y respectively, according to the definitions νi =

∫ si
si−1

g(s)ds

and µj =
∫ yj
yj−1

f(y)dy, where the intervals of definition for s and y are divided in N and M sub-

intervals respectively by a set of (s1,...,sN ) and (y1,...,yM ) values. The integral kernel K(s, y)
form is approximated by a response matrix R(i, j) representing the probability that an event
with a value of the y variable in bin j is observed as an event with a value of the s variable in bin
i. The extended discretized one-dimensional form of the Fredholm equation is then written [5]

as E[ni] = νi =
M∑
j=1

Ri,jµj + βi , whose vectorial compact form is E[n] = ννν = Rµµµ + βββ , where

the response matrix R(i, j) also includes the estimate of the reconstruction efficiency and βββ is
the vector of the number of expected background events 1.

1Events that pass the selection requirements, but have different origin from the ones of interest.
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Fig. 1 Expected and observed distributions for the invariant mass (plots (a) and (b)) and transverse momentum (plots (c)
and (d)) of the reconstructed tt̄ system. The left hand panels show distributions in the electron channel, while the right
hand panels show distributions in the muon channel. The data are compared to the sum of the tt̄ signal contribution and
backgrounds. The background contributions from W+jets and multijet production have been estimated from data, while the
other backgrounds are estimated from simulation. The uncertainty on the combined signal and background estimate includes
systematic contributions. Overflows are shown in the highest bin of each histogram.

distribution ∆|y| as a function of the reconstructed top-

antitop invariant mass mtt̄ (a two-dimensional unfold-

ing problem).

Two bins are used for mtt̄ in the two-dimensional

unfolding of∆|y| versusmtt̄, separated atmtt̄ = 450 GeV.

The choice of this mtt̄ value is motivated by the ob-
served CDF forward-backward asymmetry [6] and by

separating the data sample into two bins with roughly

equal number of events.

An additional cut on the value of the likelihood for

the tt̄ candidate is required in the two-dimensional un-

folding, since a large fraction of simulated events with

a badly reconstructed mtt̄ are found to have a low like-
lihood value.

The response matrix (including both detector and
acceptance effects) for the inclusive AC measurement

is shown in Fig. 2. Six bins in ∆|y| are used in the

response matrix, with the outermost bins broader than
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Figure 10: Left: Fixed-order predictions for the K factor and invariant mass spectrum at LO
(light), NLO (darker), and approximate NNLO (dark bands) for the LHC. Right: Correspond-
ing predictions at NLL (light) and NLO+NNLL (darker bands) in resummed perturbation
theory. The width of the bands reflects the uncertainty of the spectrum under variations of
the matching and factorization scales, as explained in the text.

using the MCFM program in this case; however, the differences compared with the shown
curves are so small that they would hardly be visible on the scales of the plots. The upper
two plots show K factors, which are defined as the ratio of the cross section to the default
lowest-order prediction dσLO,def/dM . Contrary to Figure 7, we now use the same normaliza-
tion in both fixed-order and resummed perturbation theory, so that the two spectra can more
readily be compared to each other. The lower plots show the corresponding spectra directly.
We observe similar behavior as in the low-mass region. The bands obtained in fixed-order
perturbation theory become narrower in higher orders and overlap. The bands obtained in
resummed perturbation theory are narrower than the corresponding ones at fixed order. The
leading-order resummed prediction is already close to the final result.

The information contained in Figures 8–10 can be represented differently in terms of the
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Figure 1: Scheme of evolution of the measurement of mtt̄. The predicted mtt̄ distribution
[1] (left) for tt̄ events produced in

√
s = 7 TeV pp collisions at the LHC is reconstructed [2]

(right) after the top quark decay products are measured by the ATLAS detector [3] (middle).
A Feynman diagram [4] shows the final state partons from the tt̄ decay at leading order.

2 The art of matrix inversion: max. likelihood solution

The formal solution to ννν = Rµµµ+βββ is written as µestµestµest = R−1(ννν−βββ), where R−1 is the inverse of R.
This estimate for µµµ can also be derived from the principle of maximum likelihood (ML). If one
assumes (fairly generally) that the data are independent Poisson observations in each histogram

bin, the corresponding likelihood is L = νnii
e−νi
ni!

where ννν = ννν(µ)µ)µ) according to the discretized
unfolding equation and ni is the observed number of events in bin i. Consequently the maximum
likelihood estimator for ννν obtained by imposing ∂logL(µi)/∂µi = 0 ∀ i is given by νννML = n
and consequently the estimate of µµµ is obtained as µµµML = R−1(νννML−βββ) = R−1(n−βββ) = µµµest.

Is this solution always working? An example shown in Ref. [5] reports a double-peaked true
distribution for which the resulting ML estimate shows a multi-peaked shape with extremely
large variances and very large anti-correlation between neighbouring bins: the estimate turns
out to be very different from the known input. The response matrix R for this example is
known to have sizable non-diagonal elements and the bin size of the histogram to be “inverted”
is smaller than the detector resolution encoded in the model for event migrations. Figure 2
shows the generated “true” histogram µµµ and the unfolded estimator µestµestµest. What is happening?
The application of R−1 aims at restoring the original histogram. If the migrations are properly
modelled, the inversion returns the correct values if the input data are the expectation vector ννν
of the reconstructed bin contents. However the matrix inversion is applied to one instance vector
of the data, n, it is not applied to its expectation value ννν. As a consequence, in a suggestively
descriptive way, R “assumes” that the fluctuations in n are the residual of a real original
structure diluted by the detection effects (and not of statistical origin) and uses the given input
and the available model for migrations to reconstruct µµµ, i.e. it magnifies the fluctuations back
into the result. Independently of the large fluctuations induced by the application of the matrix
inversion the ML solution provides the unbiased estimator with the smallest variance [5].
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Figure 2: Examples of “true” distribution (left) (µµµ), the resulting estimate for µµµest using the
ML solution for a given assumption on resolution and efficiency (right, see text) [5]. The vectors
µµµ, ννν, n and µµµest are defined in the text.

3 From inside ill-posed problems to regularization

A detailed two-steps analysis of the discretized unfolding equation is outlined in Section 1.5
of Ref [6] and illustrates the link between fluctuations and instability of the ML solution by
exposing the origin of instability in a quantitative manner. A synthetic description is reported
here. The likelihood representing the unfolding problem takes the form L ∝ e−

1
2χ

2(µµµ,d) and
the ML solution coincides with a least squares estimate [6]. As a first step a transformation
of variables that diagonalizes the generally non-diagonal χ2(µµµ,d) in the form 1

2χ
2(µµµ,d) =

(R′µµµ − d′)T (R′µµµ − d′) provides a new vector d′ and a new R′ matrix that are written in
terms of significances i.e. variables normalized to their uncertainties [6]. In the second step
the resulting ML solution is written in terms of significances and parameters that are sensitive
to fluctuations by using a singular value decomposition (SVD) of the R′ matrix as follows:

µµµest =
min(N,M)∑

i=1

1
σi

(uTi d
′)vi, where U = (u1,..,uN ) and V = (v1,..,vM ) are unitary matrices

written in terms of their column vectors and Σ = UTR′V is a diagonal matrix of (generally)
dimensions M × N such that Σi,j = σi for i = j, otherwise Σi,j = 0. The diagonal σi values
are called singular values of the matrix R′, they are not negative and can always be arranged
in non-increasing order. The sensitivity to fluctuations associated with the ML solution can be
quantified by the maximum ratio of the relative precision of the estimated solution µµµest to the

relative precision of the measured input vector d = n - βββ, defined as c = maxd,δd

(
δµµµest/µµµest
δd/d

)

A large value for c implies instability due to small fluctuations in the input i.e. sensitivity to
“noise” in the measurement. The quantity c = c(R) is called the condition of the R matrix
associated to the unfolding. It can be shown that c(R) = σmax/σmin [6], so the condition of the
matrix R can be read off from its SVD. Once the problem is described in terms of uncertainty
normalized variables, the large sensitivity of the ML estimator to small, high-frequency-like
fluctuations can be detected in the high condition number c(R). In order to pose the problem
more properly, it is then necessary to reduce the impact of the low significance, highly oscillating
input components while preserving the information available in the remaining high significance,
more stable components. The problem is then said to have been “regularized”. As the ML
estimator is unbiased, regularization inevitably leads to accepting a certain level of bias in
exchange for a reduced variance. The bias is defined as the difference between the expected
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value of the unfolded result and the true unmeasured expected value. It should be noted
that, despite its large variances, the ML solution is fit for use in testing a model against a
measurement, as long as the full corresponding covariance matrix is used.

The likelihood formulation of the unfolding problem quantifies the distance between the
data vector n and the expectation vector ννν. In order to filter out a certain amount of the
high frequency components of the input and alleviate the sensitivity to large fluctuations
(i.e.”regularize” the solution), constraints on the initial likelihood can be imposed by adding
Lagrange multipliers and describing the regularization as a maximization procedure for a new
log-likelihood φ written as φ = logL(µµµ) + τS(µµµ), where L(µµµ) is the initial likelihood, S(µµµ)
is called regularization function, τ is the regularization parameter to tune the strength of the
constraints. In this explicit formalism the ingredients for the regularization of a given likelihood
L(µµµ) are the regularization function S(µµµ) and a prescription for τ .

A large number of different regularization schemes is available [6]. Examples of schemes
used in particle physics include:

• Tikhonov schemes whose constraining function is the mean square of the kth derivative

of f(y): S[f(y)] =
∫

(d
kf(y)
dyk

)2dy. In most applications k = 2 is chosen, setting a constraint
on the curvature of the one dimensional distribution being unfolded.

• Iterative schemes using steps where an improved estimate at step n for the distribution
to be unfolded is obtained by convolving the estimate at step n − 1 with an updating
function that depends on the response matrix, the observed distribution and the estimate
(n− 1) itself.

• Maximum-entropy schemes whose constraining function is the expected amount of infor-
mation gained in passing from the the initial ansatz to the best estimate i.e. S(µµµ) =

H(µµµ) =
∑M
i µilogµiεi , where µµµ is the estimator vector for the unknown probability distri-

bution, the index i goes from 1 to M, the number of bins of the distribution, and εεε is the
best initial knowledge about the true, unknown distribution, assumed to be non-negative.

• Non-iterative Bayes-inspired schemes where the full unfolded spectrum is considered a
variable to be obtained by a convolution integral of the probability for the migration
model and the observed spectrum.

• Iterative unbinned schemes, using event-by-event weights based on the ratio of expected
to observed local densities to derive a new estimate of the distribution to be unfolded at
each step. A test function based on a Tikhonov-like distance or with the same analytic
form as an electric potential (of the new estimate with respect to the old one) is used to
quantify the agreement between the estimate at step n and the one at step n− 1.

All these schemes provide estimators that result in a reduced statistical variance with respect
to the ML solution and inherently add a certain level of bias to the unfolded distribution. The
heart of unfolding problems lies in achieving a balance between bias and overall uncertainty.

4 Applied unfolding: the balance of bias and uncertainty

The unprecedentedly large production of top quarks at the LHC allows to use (and explore)
unfolding schemes to measure cross sections differentially or to extract parameters from unfolded
distributions. These two general classes of analyses provide interesting unfolding examples.
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Figure 3: Distribution of reconstructed mtt̄ with data
compared to predictions (left) and associated migration
matrix (right) in the electron plus jets channel. Details
of figures are reported in Ref. [7].

In the first analysis class the measure-
ment of the relative differential cross
section for tt̄ production in LHC pp
collisions at

√
s = 7 TeV as a func-

tion ofmtt̄ [7] (1/σtt̄ dσtt̄/dmtt̄) shows
an example of unregularized unfold-
ing. The mtt̄ distribution before un-
folding and the corresponding migra-
tion matrix are shown in Figure 3 for
selected events in the electron plus
jets channel. The Tikhonov unfold-
ing scheme with k = 2 is tested by
reweighting simulated tt̄ events to en-
hance the number of events in a sin-
gle bin (see the cartoon in Figure 4).

The response to this “delta-like” pulse is reduced i.e. biased at least by 30% even for the mildest
regularized solution, while it maintains a linearity within 1% for the ML unregularized solution.
The increase in statistical uncertainty in the final ML-unfolded result (reported in Figure 4) is
tolerable as the systematic component is still dominant and under control with respect to the
regularized biased result.
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Figure 4: Scheme of “stress” test described in the text
(left) and final 1/σtt̄ dσtt̄/dmtt̄ from Ref. [7] (right).

In the second class of analyses, a
regularized scheme is used to measure
the distribution of the difference be-
tween the absolute rapidities (∆|yt|) of
the reconstructed top quark and anti-
top quark in a sample enhanced in
tt events obtained by LHC pp colli-
sions at

√
s = 7 TeV [2]. A Bayesian-

inspired iterative technique is used to
unfold the distribution of ∆|yt|, shown
in Figure 5 together with the corre-
sponding migration matrix for selected
events in the muon plus jets channel.
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Figure 5: Distribution of reconstructed ∆|yt| with
data compared to predictions (left) and associated mi-
gration matrix (right) in the muon plus jets channel.
Details of figures are reported in Ref. [2].

The number of iterations is tuned to get
the expected variation of the value for
the asymmetry to be stable within 0.1%
in simulated tt̄ events. Simulated tt̄
events are re-weighted to produce sam-
ples with different true asymmetry. The
analysis is performed on each sample
and the input asymmetries are plotted
versus the resulting measured asymme-
tries after unfolding to check the lin-
earity of the unfolding procedure (as il-
lustrated in the cartoon of Figure 6).
The small biases observed in the recon-
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structed distributions and the extracted asymmetry are quantified by the largest relative de-
viation over all the bins and the mean uncertainty-normalized relative difference between true
and unfolded values from the pull distributions, respectively. Such values are used to assign
additional systematic uncertainties to the unfolded distributions (for which an example is shown
in Figure 6) and the final asymmetry.
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Figure 6: Scheme of the linearity test described in the text (left) and final unfolded distribution
of ∆|yt| in the muon plus jets channel from Ref. [2] (right).

5 Optimization and good practices

The ideal (infinite-simulation, infinite-manpower, infinite -time) general procedure for unfolding
optimization can be generally described as the variation of the parameters of the unfolding
scheme and the binning to scan the values of the figures of merit on which the performance is
judged. Ideally one should do this for more than one unfolding scheme, then the method that is
expected to perform best should be chosen. All the studies should be performed on simulated
events. One can either scan a multi-parameter space i.e. have a function that accommodates
requirements in one or more regions of phase space or summarize the requirement for the
unfolding in one figure of merit that is a function of the parameters describing the different
phase space regions. The figures of merit vary depending on the goal to be achieved and they are
functions of bias, statistical and systematic uncertainties of the measurements and additional
assessment criteria determined by the analyzers.
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