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2R Seminar Goal
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Introduce and share a new technique:
Predictive clustering

— Developed outside of HEP

— Directly applicable to variety of problems in

HEP

e Multi-dimensional, multi-objective function
estimation

— Data are constantly multivariate (n, ¢, E...)
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P Outline

e Introduction MVA methods

* Classification vs. Regression

TERA
LE

* Single and Multi-Objective Regression
* Predictive Clustering Trees

 HEP Example Application

* Summary



A Practicum

Helmholtz Alliance

Download toy data and example
http://cern.ch/sergei/clusexample.tgz

unpack and try
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MVA Methods solve problems by building
complex systems from underlying variables

Developed in Machine Learning (1980s)

Typical Applications:

Classification: Is this an apple or a pear?
Function Estimation: How many Dr.’s are present?
Forecasting: Who will be here at the end?
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Machine-Learning view point: Classification

Distinguish f(x), g(x) using Training set of observations
{inputs , outputs}

Pass observations into a learning algorithm

neural network, decision tree
that produces outputs in response to inputs

Use another Testing set of observations to evaluate
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Zh s Classification
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Is this event a SUSY/Higgs event?

Plethora of methods:

Neural Networks € Dpescribe in detail
Boosted Decision Trees €=

Support Vector Machines

etc

Usually 5-30% improvement over expert decisions
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DeltaRJet1Jet2
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Zhi Decision Trees

Helmholtz Alliance

Building a tree:

* Scan along each variable and propose a
DECISION:

— Cut on a variable value that maximizes class
separation (branching into two)

< SOLV > 80.46
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Decision Optimization

Compare decisions proposed by all variables
at each juncture to select one optimal decision

— use information entropy to evaluate
“information” gain from a proposed split

* based on subsample purities (s/s+b)

— “Greedy” algorithm: each decision 1s
irreversible and affects the next (very much like

life)
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2 Decision Trees

Helmholtz Alliance

* Stopping criteria: no further improvement in
separation from further branching

— Sometimes maximum tree size 1s set a priori

— Terminal leaf node 1s reached

DR _Jetllet2

<3.05 \z 3.05
Background

— Class assignment
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Decision trees can grow large and risk over-
fitting the data

Improve tree by removing less powerful and
possibly noisy parts: Pruning

— Begin from the leaves and work back up

— Pruned trees smaller in size, more effective and
easier to interpret
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AN Boosting
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Train in several stages:

* Introduce event weights

— ADABoost: Freund & Schapire 1997

— Misclassified events carry greater weight in subsequent
training stages

— Classify with a majority vote from all trees

* Works very well to improve classification
power of “greedy” decision trees

— sometimes used with other classifiers
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™ ] Signal =’
3.3 Background

Normalized
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i  KEnsembles Methods
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 (@General ensemble methods construct a set of classifiers for a
given task

* C(lassify new instances by taking a vote on their predictions

* Bagging: combine trees grown from “re-sampled”
training data with replacement

* Random Forests: use random subsets of training data
and random variable sets for splitting

e Rule Ensembles: construct rules from trees
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Rule Ensembles

Decision trees can be transformed into a set of
{if, then... else} rules

Start at the root and follow a unique path to a leaf

Simple rules form powerful classifiers in a
welighted ensemble when assigning event classes
based on majority decision

— Some rules slightly better than random guessing
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Neural Networks
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Zh s Neural Networks-2
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Compute optimal network weights with
derivatives dE/dw
— Calculate gradients of errors for adjustable weights

Inputs go forward 1n feed-forward neural networks
Errors go backward! Backpropagation
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2R Neural Networks-3

IIIII

Can approximate any continuous function

Complexity determined by number of
hidden layers and hidden nodes/layer

Watch out for overtraining =y
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Training Error: 0.160 Training Error: 0.100
Test Error: 0.223 Test Error: 0.259
Bayes Error:  0.210 Bayes Error:  0.210
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Partial List of Classification Methods:

* Bayesian Neural Networks

* Decision Trees v/

* Genetic Algorithms

* Linear Discriminants

* Neural Networks v/

 Random Forests

e Random Grid Search v Discussed in this talk
 Rule Ensembles v/

* Support Vector Machines
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Machine-Learning view point: Function estimation

Learn f(x) using a Training set of observations
{inputs , outputs}

feed observations into a learning algorithm

neural network, decision tree
that produces outputs in response to inputs

use another set of observations to evaluate
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Zi=  Function Estimation
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Comet Problem by Gauss (1805): Approximate
trajectory of a comet from observations

Approach: minimize difference between
measurement and predictions 1n a systematic
fashion

Vary regression model parameters
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7l HEP Regression Example
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Improve calorimeter resolution by applying
regression

Inputs: electromagnetic shower
information, other calorimetric variables

Target Output: calorimeter energy
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Zi=  KFunction estimation
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 Think of decision tree as multidimensional
histogram

— Bins are recursively constructed

— Each associated to the value of f(x) to be
approximated

* To go from classification to regression change the
evaluation criteria used in the learning algorithm

— from maximum separation gain to minimal
variance from resulting cuts
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Classification:
* Relatively easy to extend existing classifiers to
handle more classes: just add more classes

Regression:
* Very hard to do well
* Nevertheless, very practical

* Less explored area in machine learning
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For problems that require simultaneous estimation of
N functions (that are possibly related)

— N single-function regression model solution 1s too
cumbersome

— Also less accurate

— Correlations among functions may be important and need
to be accounted for

Multi-function regression models are a better solution
in this case
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* Properly take into account dependencies between
output attributes (their correlations)

* improved performance results compared to
single-objective models, especially 1n ensembles

* usually smaller and easier to interpret

* very useful for transformations
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Predictive Clustering

Example of a multi-function regression
model based on trees or rules

— Decision trees are equated to clustering trees
by P. Langley in 1996, first noted by Fisher in
1993

— Cluster “hierarchy”
Each tree node corresponds to a cluster

Root node contains full dataset partitioned
recursively into sub-clusters
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Use decision tree induction to obtain
clusters with:
— minimal intra-cluster distance
* between examples from the same cluster

— maximal inter-cluster distance

* between examples from different clusters

* In classification trees distance metric 1s class
enthropy
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CLUS

Predictive clustering implementation
* Decision tree and rule induction system

* Designed for multi-task learning and
multi-label classification

 Well-suited for both classification and
regression problems



CLUS Example Setup

14 input variables {a, b, c, d...}
— 4 of them strongly correlated

14 target outputs to estimate {A, B, C, D...}
— 4 of them strongly correlated

Challenge: build a predictive model to describe
simultaneously all the outputs {A,B,C,D...},
provided a corresponding set of inputs.

For example: These can be correlated EM shower-
shapes
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Zh i Procedure
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Split data into disjoint Training and Testing Sets

— odd/even, randomize

Train the predictive clustering model by providing
a “map” between inputs and outputs. Let it learn.

Evaluate: Use the Test set to compare predictions
on “unseen” data to the Target values of the
outputs.
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Predictive clustering rules can be constructed
from predictive clustering trees

Main difference: simple rules focus on the
accuracy connected to the target

Predictive clustering rules focus on:
* target attribute accuracy

* tight or compact rule coverage of the instances
by computing their distance metric
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2R Correlations %
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Target Correlations

Prediction-Target Difference

Very close to Zero
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* Predictive clustering i1s a robust method for
simultaneous multi-function estimation

* Functions are well reproduced and correlations
among variables preserved in the PCT model,
good agreement with expected correlations

* Ensemble methods including bagging and rule
ensembles are available for use with the CLUS

package: try them ©
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» Useful papers about CLUS:

— http://dtai.cs.kuleuven.be/clus/publications.html

e CLUS Website:

— http://dtai.cs.kuleuven.be/clus/
— http://dtai.cs.kuleuven.be/clus/hmcdatasets/ Toy data

* Local Experts @ DESY available for help and
instructions:

— Myself (sergei.gleyzer@desy.de) and Chris Hengler
(christopher.hengler@desy.de)
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The END
© Happy Valentine’s Day ©
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