

SEARCH for Heavy Partners of the Top-quark at CMS experiment

Sadia Khalil Kansas State University, USA

DESY seminar Jan 17th, 2013 - Hamburg, Germany

Heavy Partner of the Top

- Can be divided into two main categories
 - Sequential Fourth fermion generation (SM4)
 - A simplest extension of the SM3, adding another fermion generation
 - Direct limits on t'/b' production
 - <u>M. S. Paul H. Frampton, P.Q. Hung Phys. Rep. 330 (2000) 263</u>

- Vector-like quarks
 - Transforms as (3, 1, +2/3) under $SU(3)_c \times SU(2)_W \times U(1)_Y$ would mix with the top quark
 - Rakhi Mahbubani et.el, JHEP 0906:001 (2009)

- We need new physics at TeV scale to stabilize its mass
 - T quark cancels the top loop

4th Generation

 A sequential family of the heavy quarks and leptons has been an important topic - G. D. Kribs, T. Plehn, M. Spannowsky and T. Tait, PRD 76, 075016(2007); P. Q. Hung and M. Sher, PRD 77, 037302 (2008); H. He, N. Polonsky and S. Su, PRD 64, 053004 (2001); M. Chanowitz, PRL 87, 231802 (2001) V.A. Novikov, L. B. Okun, A. N. Rozanov and M. I. Vysotsky, PLB 529 (2002);... B. Holdom, PLB 686(2010); J. Erler, P. Langacker, PRL 105,031801 (2010), ...

If exist,

- It can enhance CP violation significantly to explain the matter anti-matter asymmetry in the Universe -W. Hou, F.Lee, C. Ma PRD 79, 07302 (2009)
- It can induce a heavy neutrino as a candidate for dark matter
- expect small mass splitting between the t' and b' masses -M.Baak et al., arXiv:1107.0975

 $|m_{t'} - m_{b'}| < m_W$

4th Generation

4

- However, sequential 4th generation would enhance Higgs boson cross section by a factor ~5
 - Change of couplings: H→TT are largely enhanced, H→YY strongly suppressed
 - Having found some new state mostly showing up in H→gg is not a direct exclusion criterion.
 - If the resonance does not show up in H→TT this is a killer for this kind of models.

- Vector-like fermions (non-chiral fermions) can be found in models like:
 - Little Higgs model Nucl.Phys.Proc.Suppl.117 (2003)40
 - Warped extra dimensions Phys.Rev.Lett.83:3370-3373,1999
- These models provide an explanation to the large difference between the Plank and the electroweak scale, the so called hierarchy problem in the SM
- Production: $pp \rightarrow TT$, BB --- pair produced
- $pp \rightarrow Tt$, Bb --- singly produced
- Decays:T→bW or B→tW as in the 4th Gen case, but also flavor changing neutral current (FCNC) decays as
 - T→tZ, tH or B→bZ, bH where H couples to fermions and bosons, but with non SM couplings
 - heavy Higgs is not excluded (weaker couplings than in SM case)
 - more Higgs-like bosons are possible (one light, one heavy...)
- Different final states are possible:
 - Pair production: TT → bWbW, bWtZ, bWtH, tZtZ, tHtH, tZtH
 - Singly produced: **Tt** →**bWt**, **ttZ**, **ttH**

- At 7 TeV most heavy quark, Q searches assume 100% BR for a given channel
- Michael Peskin's slogan #2
 - ExcludeTriangles not Points, a vector-like heavy quark would have the following decay modes

https://indico.fnal.gov/getFile.py/access?contribId=49&resId=0&materialId=slides&confld=5256

- What does it mean?
 - T decays into different final states
 - T→bW
 - $T \rightarrow tZ$
 - $T \rightarrow tH$
 - There is one triangle for every T mass
 - Every point in the triangle corresponds to a different set of these branching fractions

- What does it mean?
 - ► T decays into different final states
 - T→bW
 - $T \rightarrow tZ$
 - $T \rightarrow tH$
 - There is one triangle for every T mass
 - Every point in the triangle corresponds to a different set of these branching fractions

- What does it mean?
 - ► T decays into different final states
 - T→bW
 - $T \rightarrow tZ$
 - $T \rightarrow tH$
 - There is one triangle for every T mass
 - Every point in the triangle corresponds to a different set of these branching fractions

- What does it mean?
 - T decays into different final states
 - T→bW
 - $T \rightarrow tZ$
 - $T \rightarrow tH$
 - There is one triangle for every T mass
 - Every point in the triangle corresponds to a different set of these branching fractions

Theory Cross sections

 Use HATHOR (HAdronic Top and Heavy quarks crOss section calculatoR)
http://arxiv.org/abs/1007.1327

7 TeV

Where are we now?

625 GeV

Limits on Branching Fractions

$$\max(B) = \sqrt{\frac{\max(\sigma)}{\langle \sigma \rangle}}$$

T mass	TT xsec	bW max(σ)	max(B)	tZ m $ax(σ)$	max(B)
400 GeV	1.406 pb	0.473 pb	0.58	0.48 pb	0.58
450 GeV	0.662 pb	0.246 pb	0.61	0.45 pb	0.82
500 GeV	0.330 pb	0.213 pb	0.80	0.48 pb	
550 GeV	0.171 pb	0.148 pb	0.93	0.44 pb	

PLB.2012.10.038, EXO-11-099 $t'\bar{t'} \rightarrow l + jets$

14

 $\frac{\text{PRL.107.271802, EXO-11-005}}{t'\bar{t'} \rightarrow trileptons}$

For T mass = 450 GeV

CMS Detector

CMS Detector

- The top-like physics require all sub-detectors
- Significant improvement due to Particle Flow Algorithm that uses information from all subdetectors, starting from particle traces in each sub detector to
 - muons, electrons, photons, charged and neutral hadrons
 - the list is used to reconstruct higher level objects like jets, MET
 - electrons: tracks matched to clusters in EM calorimeter
 - muons: minimum ionizing tracks, penetrate deep into muon system
 - jets / H_T: constructed with combined tracking + calo info
 - MET: constructed with combined tracking + calo info, hermetic detector

Particle Flow overview (PFT-10-003)

Thursday, January 17, 2013

Selected Analysis

Search for t' \rightarrow bW(l+jets)

Selection

• A lepton e/μ with $p_T > 30$ GeV

- \geq 4 jets, \geq 1 b-tagged jet
- Missing E_T > 20 GeV

 $t'\bar{t'} \to WbW\bar{b} \to l\nu b\bar{b}q\bar{q}$

Strategy

- Apply kinematic fit for mass reconstruction (M_{fit}) with constraints
 - $m(Iv) = m(qq) = M_W$
 - ▶ m(l∨b) = m(qqb)
 - 2-C fit \rightarrow minimize χ^2
- Define H_T (scalar sum of transverse energies of the fitted final objects)

 $H_T = p_T^{lepton} + p_T^{miss} + \sum p_T^{jets}$

- Look at the H_T and M_{fit} of the tt→IVbqqb event tails for signs of a massive quark decay
- Dominant backgrounds: ttbar and W+jets

400

600

800

M_{fit} (GeV)

200

PLB.2012.10.038, EXO-11-099

PLB.2012.10.038, EXO-11-099

PLB.2012.10.038, EXO-11-099

PLB.2012.10.038, EXO-11-099

e+jets

2D→ID Rebinning

PLB.2012.10.038, EXO-11-099

- The 2D H_T vs M_{fit} histograms have empty or low occupancy bins
 - incorrect statistical inferences
- Rebin the 2D H_T vs M_{fit} histograms
 - Project 2D histograms into a ID by ordering the bins in descending S/B ratio
 - Merge neighboring bins into ID histogram until fractional uncertainty in the combined bin falls below 20% for both the background and signal events

23

- Each color becomes a single bin in the ID template
- Same procedure for every simulated t' mass point

Sources	Syst. Unct
background normalization	50%
Luminosity	2.2%
lepton Trigger/ID	3%
Q2 (renorm. and fact. scale)	±σ(nom)
Matrix-element to parton matching	±σ(nom)
ISR/FSR	±σ(nom)
Jet Energy Scale	±σ(nom)
Jet Energy Resolution	±σ(nom)

Systematic Uncertainties

Sources	Syst. Unct
background normalization	50%
Luminosity	2.2%
lepton Trigger/ID	3%
Q2 (renorm. and fact. scale)	±σ(nom)
Matrix-element to parton matching	±σ(nom)
ISR/FSR	±σ(nom)
Jet Energy Scale	±σ(nom)
Jet Energy Resolution	±σ(nom)

 Given that no hint of new Physics is observed, the rebinned ID distributions are used to set the limit on t' pair production cross section

Systematic Uncertainties

Sources	Syst. Unct
background normalization	50%
Luminosity	2.2%
lepton Trigger/ID	3%
Q2 (renorm. and fact. scale)	±σ(nom)
Matrix-element to parton matching	±σ(nom)
ISR/FSR	±σ(nom)
Jet Energy Scale	±σ(nom)
Jet Energy Resolution	±σ(nom)

 Given that no hint of new Physics is observed, the rebinned ID distributions are used to set the limit on t' pair production cross section

Systematic Uncertainties

Search for t' \rightarrow bW(dilepton)

Selection

PLB.2012.07.959, EXO-11-050

- Two opposite sign high p_T leptons (ee, $e\mu$, $\mu\mu$)
- $Z/\Upsilon \rightarrow ee/\mu\mu$ veto
- ≥ 2 jets, ≥ 1 b-tagged jet
- Missing $E_T > 50 \text{ GeV}$

Strategy

Invariant mass of the lepton and the b-tagged jets:

$$M_{lb} = \sqrt{(E_l + E_b)^2 - |\vec{p_l} + \vec{p_b}|^2}$$

- For a top decay $M_{lb}^2 < M_t^2 M_W^2$
- Combine the two leptons and two b-tagged jets
 - 4 possible values of M_{lb}
 - Choose the minimum M_{lb}^{min}

 $t'\bar{t'} \to WbW\bar{b} \to l\nu bl\bar{\nu}\bar{b}$

Search for t' \rightarrow bW(dilepton)

PLB.2012.07.959, EXO-11-050

Backgrounds

Samples	Yield
Misidentified b-jet(s) and prompt lepton (from data)	0.7±0.8
Fake lepton(s) and real b-tagged jet(s) (from data)	0.0 ^{+0.4} -0.0
2 real b-tagged jets and 2 real leptons (from MC)	I.0±0.7
Misidentified b-jet(s) and fake lepon	0.0+0.0
Total predicted	1.8±1.1
Data	I.0

Search for t' \rightarrow bW(dilepton)

Result

PLB.2012.07.959, EXO-11-050

Exclude m_t' < 557 GeV @ 95% C.L. on the production cross section

arXiv:1210.7471, accepted by JHEP

b′→tW

 $b'\bar{b'} \to WtW\bar{t} \to WWbWW\bar{b} \to l\nu qqbqqqb$

- one isolated lepton (muon or electron)
- ≥4 jets (accounting for jets merged and out of our fiducial acceptance)

T→tZ

 $T\bar{T} \rightarrow t Z \bar{t} Z \rightarrow W b q q W \bar{b} q q \rightarrow l \nu b q q q b q q$

 We have similar N_{Jets} in the final state and therefore our selection is also sensitive to it

arXiv:1210.7471, accepted by JHEP

Selection

- A lepton e/μ with $p_T > 30$ GeV
- \geq 4 jets, \geq 1 b-tagged jet
- Jet E_T thresholds 100, 60, 50, 35 GeV
- Missing E_T : PFMET > 20.0 GeV
- Dilepton Veto

SM Backgrounds

- ttbar+jets
- non-ttbar+jets
 - W+jets
 - Single top quark
 - Z+jets
 - Diboson (WW/WZ/ZZ)
 - QCD Multijets

Strategy

$$S_T = p_T^l + \Sigma p_T^{jet} + E_T^{miss}$$

- The signal features events with high S_T and N_{Jets}
- Perform fit on S_T distributions for different jet multiplicities (N_{Jets} = 4,5,6, \geq 7) to search for a fourth generation massive quark Q

arXiv:1210.7471, accepted by JHEP

Extremely important to model the backgrounds accurately in the high tails of the ST

Systematic Uncertainty

Parameter type	meter type Source	
	Q ² scales for tt+jet	8.7
Distribution	Matching partons	5.8
Distribution	Jet energy scale	5.4
	b-tagging efficiency	5.1
	Lepton ID/reco/trigger	3.5
	Luminosity	2.2
	tī cross section	12
Normalization	$N_{jets} = 4$	3.5
	$N_{jets} = 5$	16
	$N_{jets} = 6$	23
	$\dot{N_{jets}} \ge 7$	22
	Other backgrounds	50

- The shape parameters are quoted based on their effect on the acceptance only
- Due to the correlation between the fit parameters, the combined number is not the sum of the squares of the contribution

arXiv:1210.7471, accepted by JHEP

After Fit

Results

arXiv:1210.7471, accepted by JHEP

• We exclude at 95% C.L, $m_{b' \rightarrow tW}$ < 675 GeV/c² and for $m_T \rightarrow_{tZ}$ < 625 GeV/c²

Theorist Excitement!

arXiv:1210.7471, accepted by JHEP

 As soon as this result was public, theorist get excited to claim the method! :)

Blog by Matt. Strassler(Rutgers, US) during HCP

[NOTE ADDED: Not So! in another talk at HCP, the following search by CMS was briefly mentioned: <u>http://arxiv.org/pdf/1210.7471v1.pdf</u>. See in particular Figure 1; this is almost exactly the method that we recommended. This search needs to be more widely studied and interpreted; it rules out many more variants of many more theories than the ones analyzed in the paper.]

http://profmattstrassler.com/2012/11/13/theory-killers-at-the-hcp-conference/#more-4928

- Requests are made to provide limits in light of vector quark-like models for an inclusive search for T and B decays (expected for Moriond)
- The method is very suitable for low Missing E_T natural SUSY !

arXiv:1204.1088, submitted to JHEP

EXO-11-036

Search for $b' \rightarrow tW(di/tri-lepton)$

- Backgrounds (mostly from ttbar)
 - Sources for same sign dilepton channel
 - Type I (data driven) -- Fake lepton
 - Type II (data driven)-- Charge Misidentification
 - Type III (from MC) -- Prompt dileptons
 - Sources for trilepton channel
 - Dominated by 3 prompt leptons events (ttW)

Sources	Same-charge	Trilepton
Type I +Typell	7.8 ± 2.8	
Typelll	3.6 ± 0.6	0.78 ± 0.21
Background sum	11.4 ± 2.9	0.78 ± 0.21
Observed yield	12	I

Search for inclusive b'/t' production

- Why not look for b'/t' at the same time? What about single productions?
- Assuming degenerate states: $m_{t'} = m_{b'} = m_{q'}$
- Simplifying CKM4 with one free parameter: $A = |V_{tb}|^2 = |V_{t'b'}|^2$

$$CKM4 = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} & V_{ub'} \\ V_{cd} & V_{cs} & V_{cb} & V_{cb'} \\ V_{td} & V_{ts} & V_{tb} & V_{tb'} \\ V_{t'd} & V_{t's} & V_{t'b} & V_{t'b'} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \sqrt{A} & \sqrt{1-A} \\ 0 & 0 & \sqrt{1-A} & \sqrt{A} \end{pmatrix}$$

• Assuming the branching fractions to be ~100% $\checkmark t' \to tW$

Selection and Classification

arXiv:1209.1062 (accept by PRD)

- Baseline selection
 - Lepton (e/ μ) with $p_T > 40 \text{ GeV}$
 - ≥ I jet of p_T > 30 GeV and ≥ I b-tagged
 - Missing $E_T > 40 \text{ GeV}$
- Final state topologies contains
 - ▶ I-4W bosons (\geq IW decay leptonically)
 - 2 b-quarks
- Search is performed
 - Single lepton(e/µ) + jets
 - Same-sign dilepton + jets
 - Trilepton + jets

The events can be categorized according to number of W bosons

IW	2W	3W	4W
ťb	ťť	b't + b't'	b´b´

- $t'b \rightarrow bWb$
- $t'\bar{t'} \rightarrow bWbW$
- $b't \rightarrow tWbW \rightarrow bWWbW$
- $b't' \rightarrow tWbW \rightarrow bWWbW$
- $b'\bar{b'} \rightarrow tWtW \rightarrow bWWbWW$

Search for inclusive b'/t' production

Discriminator: Scalar sum of reconstructed objects (S_T) and hadronic top mass (m_{bVV})

Search for inclusive b'/t' production

Future Aspects

- On going analysis at 8 TeV
 - **T** pair search (bwbw, bwtZ, bwtH, tZtZ, tHtH, tHtH)
 - **B** pair search (tWtW, tWbZ, tWbH, bZbH, bZbZ, bHbH)
 - Single T and B search
 - Inclusive search to extract couplings and branching ratios

Search for Vector-like B quark (I+jets)

On going analysis at 8 TeV

- Need new strategies to gain sensitivity, since we have excluded the heavy quark masses so high.
- Exploiting boosted topologies
 - ► $BB \rightarrow tWtW, tWbZ, tWbH, bHbZ, bHbH, bZbZ$
 - The decay products being highly boosted will be collimated and clustered into single jet
 - Categorize events based on b-jets and number of bosons (V-tagging)
 - Use CA Algorithm to tag a W/Z/H

Search for Vector-like B quark (I+jets)

On going analysis at 8 TeV

dR_Wqq_Wpt

306.2 0.9204

147.

Entries Mean x

Mean y RMS x

 $b'\bar{b'} \to WtW\bar{t} \to bWWbWW$ b' = 700 GeV

Search for Vector-like B quark (I+jets)

On going analysis at 8 TeV

 Using Multidimensional fit using N_{Jets}, N_{b-tags} and N_{Vtags} gives sensitivities to high mass signal region

Summary (7 TeV)

Search	Channel	Lower mass limit
() h (- c) h	lepton+jets	570 GeV/c ²
t →ovv pair	dileptons	557 GeV/c ²
	lepton+jets	675 GeV/c ²
b →tvv pair	trilepton and same-sign dilepton	611 GeV/c ²
Τ	lepton+jets	625 GeV/c ²
I →t∠ pair	trileptons	475 GeV/c ²
B→bZ pair	two leptons	550 GeV/c ²
Model-Dependent t´/b´	lepton(s)+jets	685 GeV/c ²

Conclusions

- CMS has the most stringent limits on the existence of 4th generation quarks
- We have reached the critical mass of ~550 GeV/c² at which fermion's weak interactions become nonperturbative M.S. Chanowitz, M.A. Furman, I. Hinchcliffe, Phys. Lett.B78, 285 (1978)
- Many interesting analysis are awaited for Moriond exploring the territories that were not explored before!
 - overlap with top Physics
 - overlap with SUSY

Thank you!

Extra material

Backgrounds

- Backgrounds (mostly data driven)
 - Category I misidentified b-jet(s) and prompt leptons
 - use data control regions for events passing all but b-tag jet requirement.
 - $N_{\text{Imistag}} \rightarrow \text{with I b-tag, weight each untagged jet by mistag rate (r_i)}$
 - No untagged jets passes M_{Ibmin} selection \rightarrow event weight=0
 - For each untagged jet passing M_{Ibmin} selection \rightarrow event weight is increased by $r_i / (r_i - I)$
 - $N_{2mistag} \rightarrow weight each untagged jet by r_i / (r_i I) * r_j / (r_j I)$
 - $N_{\text{mistag}} = N_{1 \text{mistag}} N_{2 \text{mistag}}$
 - Category II fake lepton(s) and real b-tagged jet(s)
 - use data control region of lepton passing loose selection of electron ID
 - Fraction of loosly identified electron passing the event ref selection = 0
 - Category III 2 real b-tagged jets and 2 real leptons (obtained from MC)
 - require to match the jets and leptons at generator level particles
 - Category IV misidentified b-jet(s) and fake lepton(s) (negligible)
 - no double counting possible as shown by Category II

Sample	Yield
Category I (from data)	0.7 ± 0.8
Category II (from data)	$0.0^{+0.4}_{-0.0}$
Category III (simulated)	1.0 ± 0.7
Total prediction	1.8 ± 1.1
Data	1

Global Event Description

- Charged-based separation of components making best use of
 - field integral $B \times R = 4.9 \text{ T} \cdot \text{m}$
 - calorimeter granularity $\Delta \eta \times \Delta \phi |_{\rm ECAL} \sim 0.017^2$

 $\Delta \eta \times \Delta \phi|_{\mathrm{HCAL}} \sim (5 \cdot \Delta \eta) \times (5 \cdot \Delta \phi)|_{\mathrm{ECAL}}$

- iterative tracking(progressively relaxing constrains/removing hits)
- Inking algorithm yields blocks sub-detector elements called particle candidates
- Particle flow provides a global description of each event
- A reconstructed jet is "again" a cluster of particles

Algorithm	Calorimeter-based	_	Particle Flow	
Composition	Towers	Charged Hadrons	Photons	Neutral hadro
Energy fraction	100%	65%	25%	10%
Energy	$E_{HCAL} + E_{ECAL}$		$\sum_{k=h^{\pm},h^{0},\gamma,\ell}E_{k}$	
Resolution (σ)	$120\% \sqrt{E}$	$1\% p_T$	$1\% \sqrt{E}$	$120\% \sqrt{E}$
Direction	biased by \vec{B}	vertex-based	good resolution	-

- crucial for b-jets (e.g. reduce material budget uncertainty on energy scale)
- crucial for missing transverse energy $\vec{p}_{T}^{\text{miss}} = -\sum_{k=h^{\pm},h^{0},\gamma,\ell} \vec{p}_{T,k}$

P. Silva

CERN PH-LHC Seminar

Search for vector-like $T \rightarrow tZ(trilepton)$

B.F = 5.4% for (e/μ)

1.14 fb⁻¹

PRL. 107, 271802(2011)

Thursday, January 17, 2013

 With the observed upper limit at 95% CL on the production cross section, we excludes a T quark with a mass < 475 GeV

Search for vector-like $B \rightarrow bZ(dilepton)$ EXO-11-066

Yields

	Z→ee	Z→µµ
B′(350 GeV)	222±6	345±9
Total Pred	648±15	999±26
DATA	604±24	928±30

Assuming a branching fraction of I00% B' \rightarrow bZ

• With the observed upper limit at 95% CL on the production cross section, we excludes a B'quark with a mass < 550 GeV