Messung von Multijet-Wirkungsquerschnitten in tiefunelastischer Elektron-Proton-Streuung mit dem ZEUS-Detektor bei HERA

Jörg Behr, Holger Enderle, Robert Klanner, Peter Schleper, Thomas Schörner-Sadenius, Thorben Theedt

> - DPG Frühjahrstagung Freiburg -4. März 2008

Universität Hamburg

BMBF - Förderschwerpunkt

Elementarteilchenphysik

Großgeräte der physikalischen Grundlagenforschung

- Jetproduktion in tiefunelastischer Elektron-Proton-Streuung
- Motivation f
 ür die Messung von Multijet-Wirkungsquerschnitten
- Vorstellung der Analyse (Selektion)
- Sweijet- und Dreijet-Wirkungsquerschnitte, R_{3/2}
- Ausblick und Zusammenfassung

Jetproduktion in tiefunelastischer ep-Streuung

Gliederung Jetproduktion Motivation HERA.ZEUS Breit-System Selektion Kontrollverteilungen Wirkungsguerschnitte Ausblick Zusammenfassung

Bei Prozessen des neutralen Stromes tritt ein gestreutes Elektron im Endzustand auf.

 $Q^{2} = -q^{2} = -(l - l')$ $x_{\rm Bj} = \frac{Q^{2}}{2p \cdot q}$

 $y = \tfrac{p \cdot q}{p \cdot l}$

 $Q^2 = s \cdot y \cdot x_{\rm Bj}$

Bosonvirtualität Impulsbruchteil des Partons in der Wechselwirkung Inelastizität des Elektrons

Jets:

- Partonen im Endzustand fragmentieren und bilden farbneutrale Hadronen
- Impulse dieser Hadronen sind in etwa kollinear mit dem ursprünglichen Quark. Hadronen bilden einen sogenannten Jet.
- Viererimpuls des Jets ≈ Viererimpuls des ursprünglichen Quarks
- Zugang zur Partondynamik (→ QCD)

Jet-Wirkungsquerschnitt (symbolisch):

- $\sigma \sim \sum_{j} \alpha_{s}^{j} \left(\mu_{r}^{2} \right) \cdot \sum_{a} \left[f_{a/p} \left(x, \mu_{f}^{2} \right) \otimes \hat{\sigma_{a}} \left(\mu_{f}^{2}, \mu_{r}^{2}, x, j \right) \right]$
 - Reihenentwicklung von σ in Ordnungen von α_s (pertubative QCD)
 - Faltungen von Parton-Verteilungsfunktionen $f_{a/p}$ (PDFs) und Matrixelement $\hat{\sigma_a}$ der "harten Streuung" \rightarrow Faktorisierung
 - PDFs f_{a/p} sind a-priori nicht berechenbar
 - "harte Matrixelement" σ̂a wird für jede feste Ordnung j in αs berechnet (Zweijets → O (α²_s), Dreijets → O (α³_s))
 - Bei hohem Q^2 werden Unsicherheiten der theoretischen Vorhersagen "klein"
 - Bestimmung der Kopplungskonstanten α_s der starken Wechselwirkung
 - Informationen über Parton-Verteilungsfunktionen $f_{a/p}$

- Gluon-PDF: bisher $\frac{d\sigma^2}{dxdQ^2} \propto F_2(x,Q^2)$ (indirekter Beitrag über Skalenverletzung)
- σ für den Boson-Gluon-Fusions-Prozess hängt von α_s und der Gluon-PDF ab
- Gluon-PDFs in kombinierten QCD-"Fits"
 - $\frac{d\sigma^2}{dx dQ^2} \propto F_2(x,Q^2)$ • zusätzlich: inklusive Jet- und
 - zusåtzlich: inklusive Jet- und Dijet-Wirkungsquerschnitte (hep-ph/0503274)
 - Unsicherheit in Intervallen von Q² und x ohne (rot) und unter (gelb) Einbeziehung von Jet-Daten
 - General General

5/1/

Beschleuniger HERA und der ZEUS-Detektor

 Elektron/Positron-Proton-Beschleuniger (HERA) mit 27.5 GeV Strahlenergie f
ür die Elektronen und 920 GeV Strahlenergie f
ür die Protonen

Gliederung Jetproduktion Motivation HERAZEUS Breit-System Selektion Kontrollverteilungen Wirkungsguerschnitte Ausblick Zusammenfassung

- Betrieb bis Ende Juni 2007
- Schwerpunktsenergie $\sqrt{s} \approx 318 \text{GeV}$
- Daten des ZEUS-Experimentes aus den Jahren 1998 bis 2007
- integrierte Luminosität: $L \approx 420 \text{ pb}^{-1}$ (1998 bis 2007)

- Definition Breit-Bezugssystem: $2x_{Bj}\vec{p} + \vec{q} = 0$
- ausgetauschtes Boson kollidiert "frontal" mit Parton aus dem Proton
- Transversalenergien sind ein Indikator für "harte" QCD-Prozesse
- Durch Schnitte auf Transversalenergien im Breit-Bezugssystem lassen sich nicht-QCD-Ereignisse unterdrücken

Phasenraum-Schnitte

- Photonvirtualität: $125~{\rm GeV^2} < Q^2 < 5000~{\rm GeV^2}$
- Streuwinkel γ_h des hadronischen Systems im Labor: $-0.65 < \cos \gamma_h < 0.65$

Jet-Selektion

Jet-Rekonstruktion mit dem longitudinal invarianten k_\perp -Algorithmus im inklusiven Modus im Breit-Bezugssystem

- Pseudorapidität: $-2.0 < \eta_{\text{Breit}} < 1.5$
- Zweijet-Ereignisse:
 - Asymmetrischer $E_{T,\text{Breit}}$ -Schnitt: $E_{T,\text{Breit}}^{\text{jet1}} > 12 \text{ GeV}, E_{T,\text{Breit}}^{\text{jet2}} > 8 \text{ GeV}$
- Dreijet-Ereignisse:
 - $E_{T,\text{Breit}}^{\text{jet}} > 5 \text{ GeV}$
 - Invariante Dreijet-Masse: $M > 25 \ GeV$

Vergleich unkorrigierter Daten mit MC-Simulationen

Gliederung Jetproduktion Motivation HERA.ZEUS Breit-System Selektion Kontrollverteilungen Wirkungsguerschnitte Ausblick Zusammenfassung

Zweijet-Produktion

- MC-Simulationen beschreiben Verteilung der invarianten Jet-Masse der Daten
- gute Übereinstimmung zwischen Daten und MC-Simulationen in allen weiteren relevanten Verteilungen (hier nicht gezeigt)
- Government of the second seco

Dreijet-Produktion

Gliederung Jetproduktion Motivation HERA,ZEUS Breit-System Selektion Kontrollverteilungen Wirkungsquerschnitte Ausblick Zusammenfassung o Virkungsquerschnitte differentiell in Q^2

Zweijet-Ereignisse:

Dreijet-Ereignisse:

- dominate systematische Unsicherheiten: Akzeptanzkorrektur, Jet-Energieskala (gelbliches Band)
- Vergleich der Daten mit theoretischen Vorhersagen (NLOJet++)
 - Zweijets $O\left(\alpha_s^2\right)$
 - Dreijets $O(\alpha_s^3)$
- Gute
 Übereinstimmung
- \hookrightarrow Bestimmung von $R_{3/2}\left(Q^2\right) = \frac{\sigma_{3jet}}{\sigma_{2jet}}$

Gliederung Jetproduktion Motivation HERA,ZEUS Breit-System Selektion Kontrollverteilungen Wirkungsquerschnitte Ausblick Zusammenfassung of Verhältnis $R_{3/2} = \frac{\sigma_{3jet}}{\sigma_{2jet}}$ und Bestimmung von α_s

$$R_{3/2} = \frac{\sigma_{3-\text{Jet}}}{\sigma_{2-\text{Jet}}}$$

- Gute Übereinstimmung zwischen Daten und theoretischer Vorhersage
- korrelierte systematische Unsicherheiten der Messung heben sich bei der Bestimmung von R_{3/2} teilweise heraus
- Reduzierung der systematischen Fehler der Messung notwendig
- Variation von α_s in Berechnung der theoretischen Vorhersage α_s (siehe nächste Folie)
- Ziel: α_s-Extraktion

Ziel der Analyse

Eine Methode der α_s -Bestimmung

- Verwendung verschiedener Parametrisierungen der PDFs bei der Berechnung der theoretischen Vorhersagen für verschiedene Werte von $\alpha_s (M_Z)$
- Verwendung verschiedener Sets von PDFs → Abschätzung PDF-Unsicherheit
- Parametrisierung der $\alpha_s (M_Z)$ -Abhängigkeit durch

$$\frac{d\sigma}{dA} = C_1 \cdot \alpha_s \left(M_Z \right) + C_2 \cdot \alpha_s^2 \left(M_Z \right).$$

- \hookrightarrow mit dem Resultat der Anpassung kann die Messung in einen α_s (M_Z)-Wert transformiert werden
- Renormierungs-Gruppen-Gleichung → "laufende" Kopplung

Beispiel: ältere HERA-Resultate

- $10 < Q^2/\text{GeV}^2 < 5000$ (hep-ex/0502007)
- diese Analyse: ≈ 5 mal höhere Statistik, nur hohe $Q^2 \rightarrow$ niedrige NLO-Unsicherheiten
- Konsistenz von α_s aus vielen Prozessen (unten)
- HERA Jet-Daten zeigen "laufende" Kopplungsstärke

Gliederung Jetproduktion Motivation HERA,ZEUS Breit-System Selektion Kontrollverteilungen Wirkungsquerschnitte Ausblick Oo • •

- 127.6 pb^{-1} der insgesamt 420 pb^{-1} an Daten wurden analysiert
- Multijet-Wirkungsquerschnitte in tiefunelastischer ep-Streuung bei hohen Q^2 wurden gemessen
- Akzeptable Übereinstimmung im Rahmen statistischer und systematischer Unsicherheiten zwischen Messung und theoretischen Vorhersagen (NLOJet++ Dreijets: $O(\alpha_s^3)$)
- Das Wirkungsquerschnittsverhältnis R_{3/2} wurde bestimmt und wird durch theoretische Vorhersagen beschrieben

Ausblick

Extraktion von α_s