GEFÖRDERT VOM

Untersuchungen zur Oberflächenschädigung von Si-Sensoren durch Röntgenstrahlung

Friederike Januschek^{1,2}, <u>Hanno Perrey</u>¹, Robert Klanner¹, Eckhart Fretwurst¹ und Jolanta Sztuk-Dambietz¹

> ¹Institut für Experimentalphysik, Universität Hamburg ²DESY, Hamburg

3. März, DPG Freiburg 2008

- A TE N - A TE N

크

Einleitung

- Motivation
- Teststrukturen: "gate-controlled diodes"
- Strom- und Kapazitäts-Charakteristika von MOS-Dioden
- Versuchsdurchführung

2 Messergebnisse

3 Zusammenfassung

The Sec. 74

< 6 k

Motivation: Anforderungen bei XFEL

- Spitzenbrillanz viele Größenordnungen über der bisheriger Röntgenquellen
- integrierte Photonflüsse bis zu $10^{12} \gamma / \text{Pixel} = 10^9 \text{ Gy} [10^9 \text{ J/kg}]$
- XFEL: Photonenergien im Bereich von 10 keV

Mögliche Effekte auf Detektoren und Elektronik

- keine Volumen-Schäden: wären erst ab $E_{\gamma} \approx 300 \, \mathrm{keV}$ zu erwarten
- Ladungs-Ansammlung an Oberfläche (Si-SiO₂ Übergang)
 - \Rightarrow Verschiebung der Flachband-Spannung V_{FB}
 - ⇒ hohe Feldstärken (daher Gefahr von Durchbrüchen)
- Oberflächen-Rekombination führt zu Dunkelströmen

Hanno Perrey (Uni Hamburg)

Motivation: Anforderungen bei XFEL

- Spitzenbrillanz viele Größenordnungen über der bisheriger Röntgenquellen
- integrierte Photonflüsse bis zu $10^{12} \gamma / \text{Pixel} = 10^9 \text{ Gy} [10^9 \text{ J/kg}]$
- XFEL: Photonenergien im Bereich von 10 keV

Mögliche Effekte auf Detektoren und Elektronik

- keine Volumen-Schäden: wären erst ab $E_{\gamma} \approx 300 \, \text{keV}$ zu erwarten
- Ladungs-Ansammlung an Oberfläche (Si-SiO₂ Übergang)
 - ⇒ Verschiebung der Flachband-Spannung V_{FB}
 - ⇒ hohe Feldstärken (daher Gefahr von Durchbrüchen)
- Oberflächen-Rekombination führt zu Dunkelströmen

Hanno Perrey (Uni Hamburg)

Verwendete Teststrukturen: gate-controlled diodes

Untersuchung von Strahlenschäden

DPG Freiburg 2008 5/14

MOS-Dioden: Strom- und Kapazitäts-Charakteristika

Hanno Perrey (Uni Hamburg)

DPG Freiburg 2008 6/14

Versuchsdurchführung

Bestrahlung

Von August – Dezember 2007 wurden 8 *gate-controlled* Dioden bestrahlt:

- 4 Dioden in 11 gleichen Schritten $1 \text{ kGy} \rightarrow 1 \text{ MGy}$
- 4 Dioden in bis zu 10 Schritten bis 1 GGy
- $\bullet~$ Dosisrate einstellbar zwischen $\sim 0.5\,kGy/s$ und $\sim 150\,kGy/s$

Insgesamt wurden über 70 Bestrahlungen und Messungen durchgeführt.

Hanno Perrey (Uni Hamburg)

2

イロト イヨト イヨト イヨト

Dosisabhängigkeit der Oberflächenstroms Iox

< 🗇 🕨

Dosisabhängigkeit des Oberflächenstroms Iox

Oberflächenstromdichte I_{ox}/A_{Gate} als Funktion der Dosis

- Iox/AGate wächst um mehr als zwei Größenordnungen
- Oberflächenstrom ist begrenzt → bis 1 GGy kein Problem mit Dunkelströmen!

Hanno Perrey (Uni Hamburg)

Untersuchung von Strahlenschäden

Dosisabhängigkeit der MOS-Kapazität

Kapazität als Funktion der Spannung am 2. und 3. Gate

- aufgetragen f
 ür 5 Bestrahlungsschritte einer Diode (CB03-50)
- Linien markieren
 C_{ox} (horizontal) und
 V_{fb} (vertikal)

Flachbandspannung V_{fb} verschiebt sich mit der Dosis!

3 > 4 3

Dosisabhängigkeit der Flachbandspannung V_{fb}

als Funktion der Dosis

- Anstieg um etwa eine Größenordnung
- Oxid-Ladungsdichte ist begrenzt → bis 1 GGy kein Problem!

Hanno Perrey (Uni Hamburg)

Untersuchung von Strahlenschäden

DPG Freiburg 2008 12 / 14

- 2 Messergebnisse
- 3 Zusammenfassung

2

Zusammenfassung

- Gate-Controlled Dioden wurden mit Röntgenstrahlung bis zu einer Dosis von 1 GGy bestrahlt
- Deutlicher Anstieg von *I*_{ox}, *V*_{fb} und *N*_{ox} gemessen
- Dennoch sind *I*_{ox}, *V*_{fb} und *N*_{ox} begrenzt
- Erwarten prinzipiell kein Problem bei hohen Dosen
- Andere Detektoren und Elektronik müssen überprüft werden