PDFs	PDFs & Jets: Prinzip	PDFs & Jets: Ergebnis	Stand der Arbeit	S & O

Jet-Messungen bei HERA und ihr Nutzen für PDF-Fits in NLO QCD

Robert Klanner, Peter Schleper, Björn Opitz, Thomas Schörner-Sadenius

Universität Hamburg, Institut für Experimentalphysik

DPG-Frühjahrstagung, 7. März 2008

PDFs PDFs & Jets: Prinzip PDFs & Jets: Ergebnis Stand der Arbeit

- Parton-Verteilungsfunktionen
 Fits an F₂-Messungen
- 2 PDF-Fits mit Jet-Daten: Prinzip
- PDF-Fits mit Jet-Daten: Ergebnisse
- 4 Stand der Arbeit

 PDFs
 PDFs & Jets: Prinzip
 PDFs & Jets: Ergebnis
 Stand der Arbeit
 S & 0

 •000
 000
 00
 00
 000
 0000000

Die "brodelnde Suppe" aus Quarks und Gluonen wird von "**parton distribution functions**" (PDFs) beschrieben. Eigenschaften:

 $\mathbf{x}_{l}\mathbf{P}_{l}$

 x_2P_2

ô(0

- $f_{a/p}(x, Q^2)$: beschreiben die Wahrscheinlichkeit, in einem Prozess mit "Auflösung" Q^2 ein Parton (= Quark oder Gluon) vom Typ *a* mit Protonimpulsbruchteil *x* zu finden.
- Proton → nicht-perturbatives Regime: Bestimmung der PDF durch Fits notwendig! Input: Fixed-Target-Experimente, TeVatron, HERA.
- PDFs sind *universell:* Bestimmung in Prozess XY → Anwendung in Prozess YZ möglich
- Basis für Berechnung von Wirkungsquerschnitten: <u></u> **"Faktorisierung"** \longrightarrow Aufteilung von σ_{process} in PDFs und harten partonischen Subprozess:

Z.B: Jet-Produktion in *pp*-Streuung $\sigma_{pp} \propto f_{a1/p1}(x_1, Q^2) \otimes f_{a2/p2}(x_2, Q^2) \otimes \hat{\sigma}_{a1,a2}(Q^2)$

Zur Erinnerung: HERA-Kinematik

 $Q^2 = -(k - k')^2$ Impulstransferquadrat: Auflösung $x_{
m Bj} = rac{Q^2}{2pq}$ Parton-Anteil am Protonimpuls

*F*₂: Die elektromagnetische Strukturfunktion des Protons

$$F_2(x,Q^2) = x \sum_q e_q^2 \cdot f_q(x,Q^2)$$

"Reduzierter" Wirkungsquerschnitt:

$$\sigma_r = \frac{d^2 \sigma_{e^{\pm}p}}{dx dQ^2} / \frac{2\pi \alpha^2}{xQ^4 Y} = F_2 \cdot (1 + \Delta)$$

(Kinematik herausfaktorisiert)

HERA 1 e⁺p Neutral Current Scattering - H1 and ZEUS

PDFs PDFs & Jets: Prinzip PDFs & Jets: Ergebnis Stand der Arbeit S & 0 00000 000 000 000 000 000 000 000 000 000 000 000 000 0000 000 0000 0000 0000 0000 0000 0000 0000 000000 00000 000000<	Wie fu	nktioniert ein	F_{2} -Fit?		
	PDFs ○○●○	PDFs & Jets: Prinzip 000	PDFs & Jets: Ergebnis	Stand der Arbeit	S & O 00000

Grundlage: DGLAP-Evolution der Partondichten

 $\frac{dq_i(x,Q^2)}{d\ln Q^2} \propto \alpha_S \cdot \int_x^1 \frac{d\xi}{\xi} [g(x,Q^2) P_{qg}(x/\xi) + q_i(x,Q^2) P_{qq}(x/\xi)]$

- Parametrisierung der PDFs in xbei Skala Q_0 : $q_i(x) = p_1 x^{p_2} (1-x)^{p_3} ...$
- Berechnung der PDFs bei
 Q > Q₀ mit DGLAP-Gleichungen
- Berechnung von σ_r
- Wiederholung mit unterschiedl. Startparametern, χ^2 -Fit: $\mathcal{O}(10^3)$ Berechnungen.

Was ist eigentlich mit den Gluonen?

Problem: Gluonen sind elektrisch neutral.

 F_2 hängt von der **Gluondichte** $g(x) \equiv f_g(x)$ nur über

scaling violations ab:

$$xg(x) \propto \frac{\partial F_2(\frac{x}{2},Q^2)}{\partial \ln Q^2}$$

 \rightarrow **Große Unsicherheit**, vor allem bei hohen *x*. Und: Starke PDF-Fitter-Gruppen-Abhängigkeit.

Grün: Gluon-Unsicherheit (CTEQ6), Linien: MRST

Besser: Direkte Gluon-Abhängigkeit!

Boson-Gluon-Fusions-Ereignisse: Erkennbar an **zwei Jets**, oder Produktion schwerer Quarks (c,b).

Verbesse	eruna: möali	ch?		
PDFs 0000	PDFs & Jets: Prinzip ●○○	PDFs & Jets: Ergebnis	Stand der Arbeit	S & O 000000

Idee:

- Messung von Jet-Wirkungsquerschnitten: $\frac{d\sigma}{dQ^2}, \frac{d\sigma}{dE_T}, \frac{d\sigma}{dM_{jj}}, \frac{d\sigma}{d\eta}$, doppelt differenziell, für 1,2,3 Jets ...
- Vergleich mit theoretischen Vorhersagen die von Gluondichte abhängen
- Nutzung der Jet-Daten in einem PDF-Fit.

ABER:

- Berechnung von Jet-Wirkungsquerschnitten: kompliziert, darum langsam
- Genügend Statistik (10⁸ Events): → ein Tag Rechenzeit
- Fit mit 1000 Berechnungen \longrightarrow drei Jahre. Unpraktisch.

• Berechnung von Jet-Wirkungsquerschnitten:

$$\sigma = \sum_{n=1}^{2} \alpha_S^n(\mu_R) \sum_a \int_x^1 dx' \cdot \hat{\sigma}_{a,n}(\frac{x_{\mathrm{Bj}}}{x}, \mu_F, \mu_R) \cdot f_{a/p}(x, \mu_F)$$

(Partontypen *a*, Subprozess $\hat{\sigma}_a$)

Schneller: Summation über Bins in x and Q² anstelle der Faltung

 — PDF außerhalb des Integrals!

$$\sum_{a} \int \hat{\sigma}_{a} \cdot f_{a/p}(x, Q^{2}) \longrightarrow \sum_{a} \sum_{i,j} \tilde{f}_{a/p}(x_{i}, Q_{j}^{2}) \cdot \int \hat{\sigma}_{a}$$

(Bedingung: PDFs f_a hinreichend konstant in (x_i, Q_i^2) -Bins.)

- Vor uns: M. Wobisch (2000) → "fastNLO"-Gruppe: genutzt von CTEQ
- Und: ZEUS-Kollaboration "ZEUS-JETS fit", DESY-05-050

PDFs 0000	PDFs & Jets: Prinzip ○○●	PDFs & Jets: Ergebnis	Stand der Arbeit	S & O 000000
So funl	ktioniert's			

- Berechnung der Jet-Observablen wie üblich: NLO-Programm
- Speichern von **Gewichten** $\int \hat{\sigma}_a$ für (x, Q^2) -Bins in Matrix-Form:

 $(ix, iQ^2, iE_T^2, n \otimes a, iobs)$

 Nun: Berechnung der Jet-Observablen mit Gewichten aus diesem "Grid-File" (ASCII) möglich — mit verschiedenen PDF-Parametern für Fit!

Ergebnis:

- Integration nur einmal notwendig, um Gewichte zu berechnen
 Zeitdauer: ca. 1 Tag
- Berechnung der Jet-Observablen aus dem Grid-File:
 - \longrightarrow nur noch wenige Sekunden!
- Wiedergabe der NLO-Ergebnisse: Ungenauigkeit von weniger als 1 ‰ — kleiner als PDF-Unsicherheit
 - kleiner als Unsicherheit durch Renormierungsskala

(Abschätzung: Variation von μ_R um Faktor 2)

Auswirkungen auf PDFs

"ZEUS-JETS" Fit: Einbau von (nur!) zwei Jet-Analysen in PDF-Fit (zusätzlich zu F_2 -Daten)

- Dijets in PHP, HERA-I 96/97, *L* = 38.6 pb⁻¹
- Inkl. jets in DIS, 96/97, L = 38.6 pb⁻¹

Resultat:

Deutliche Reduktion der xg-Unsicherheit, vor allem bei hohen x.

Weitere Verbesserung, Relevanz für den LHC

Studie von C. Gwenlan, M. Cooper-Sarkar (Oxford)

Projektion: PDF-Fit mit HERA-II-Statistik

Minimierung der xg-Unsicherheit

... ermöglicht präzisere Vorhersagen für den LHC

LHC: Genaue Kenntnis des QCD-Backgrounds — besseres "discovery potential" für Physik jenseits des Standardmodells.

Stand de	er Arbeit			
PDFs	PDFs & Jets: Prinzip	PDFs & Jets: Ergebnis	Stand der Arbeit	S & O
0000	000		● ○	00000

Was getan wurde

- Aufbau und Berechnung der "Grids" für weitere Analysen
- Entwicklung eines Programmes zur Jet-Berechnung aus Grids:
 - Input: Analyse (ZEUS oder H1), Renormierungsskala, PDF
 - Output: Werte der Jet-Observablen \longrightarrow s. nächste Folie

Was noch zu tun ist

• Kleinere Studien (Gwenlan, Cooper-Sarkar) haben gezeigt:

- Einfluss von mehr (HERA-I-) Statistik: eher gering
- Einfluss von unterschiedlichen Observablen: eingeschränkt durch Fehlerkorrelation
- Darum gewünscht: Genaue Untersuchung des HERA-Phasenraums bezüglich Jet-Wirkungsquerschnitten mit:
 - hoher xg-Sensitivität,
 - geringer Korrelation,
 - niedriger Skalenunsicherheit
 - und genügend statistischer Signifikanz.

PDFs & Jets: Ergebnis Stand der Arbeit \cap Stand der Arbeit (II): Output typicalassembleshelloutput.txt typicalassembleshelloutput.txt Dec 11. 07 17:18 Page 1/2 Dec 11. 07 17:18 Page 2/2 (zenhamburg5) ~/ass \$ assemble.sh LHAPDF Version 5.3.0 Please choose the PDF group you would like to use : 1) CTEO6.1 >>>>> PDF description: <<<<< MSRT2001E CTEQ6.1 Reference: J. Pumplin, D.R. Stump, J. Huston, H.L. Lai W.K. Tung, S. Kuhlmann, J. Owens You chose PDF group CTEO6.1. hep-ph/0303013 This set has 41 member PDFs. mem=0 --> central value (cteq61m) mem=1-40 --> 20 sets of +ve/-ve error values Please choose the PDF set(s) you would like to use : ID) (ID >= 0) set ID for the given series 1 : 5<02<7: 5<ET<10: -1) evaluation for all error sets 2 : 5<Q2<7; 10<ET<15: 13 37806 3 : 5<02<7: 15<ET<20: 4 : 5<Q2<7; 20<ET<80: You chose set 0. 5 : 7<02<10; 5<ET<10: 6 : 7<02<10: 10<ET<15: 9.05050 7 : 7<Q2<10; 15<ET<20: Please choose the analysis to be performed : 8 : 7<02<10; 20<ET<80; 0.06876 47.40215 5.77366 1.18330 9 : 10<Q2<15; 5<ET<10: 1) DESY-06-128 dijets. ZEUS dijets (high 02) 10 : 10<02<15; 10<ET<15: 2) DESY-06-128 incl. jets: ZEUS inclusive jets (high 02) 11 : 10<02<15: 15<ET<20: 3) DESY-07-073: H1 inclusive jets (high Q2) 12 : 10<Q2<15; 20<ET<80: 0.04428 4) H1 preliminary 07-035; H1 inclusive jets (low 02) 13 : 15<02<20; 5<ET<10; 29.63108 14 : 15<Q2<20; 10<ET<15: 3.80812 0.78884 0.02975 15 : 15<Q2<20; 15<ET<20: 16 : 15<Q2<20; 20<ET<80: 17 : 20<Q2<30; 5<ET<10: 18 : 20<Q2<30; 10<ET<15: 19 : 20<Q2<30; 15<ET<20: 16 : 15<02<20: 20<ET<80: 17.94634 You chose analysis H1 preliminary 07-035: H1 inclusive jets (low Q2). 2.46438 20 : 20<Q2<30; 20<ET<80: Please choose the ren. scale to be used : 21 : 30<02<40: 5<ET<10: 10,60209 22 : 30<02<40: 10<ET<15: 1) Q2 2) 0.25*02 23 : 30<Q2<40; 15<ET<20: 24 : 30<02<40: 20<ET<80: 0.01315 4) Et**2 25 : 40<Q2<100; 5<ET<10: 3.82971 0.66495 5) 0.25*Et**2 26 : 40<02<100; 10<ET<15: 6) 4*Et**2 27 : 40<02<100: 15<ET<20: 0.15455 28 : 40<Q2<100; 20<ET<80: 0.00619 8) 0.25*(02+Et**2) 9) 0.0625*(02+Et**2) Calculation time : 7s 10) 4*(Q2+Et**2) (Note that Et is either the single-jet Et (inclusive jets) or the mean dijet Et (dijets)!) You chose scale 8. Resetting Opening the grid file and reading in ... Starting to assemble the cross-sections !

Zusan	nmenfassung a	& Ausblick		
PDFs 0000	PDFs & Jets: Prinzip	PDFs & Jets: Ergebnis	Stand der Arbeit	S&O ●0000

Zusammenfassung ...

- Jet-Messungen ermöglichen direkten Zugang zur Gluon-Verteilungsfunktion *g*(*x*).
- Ihre Nutzbarkeit f
 ür PDF-Fits wurde erm
 öglicht und demonstriert.
- Dies reduziert die Unsicherheit der Gluondichte erheblich.

... Ausblick

- Eine systematische Suche nach Phasenraumregionen und Jet-Observablen mit hoher Sensitivität auf die Gluondichte wurde begonnen.

PDFs 0000	PDFs & Jets: Prinzip	PDFs & Jets: Ergebnis	Stand der Arbeit	S&O ⊙●○○○○

Fin.

PDFs 0000	PDFs & Jets: Prinzip 000	PDFs & Jets: Ergebnis	Stand der Arbeit	S&O 00●00

Backup

Weiß jemand, wie ich vermeiden kann, dass bei den Backup-Folien die Seitenzahl angezeigt wird?

Genauigkeit der "Grid-Methode"

Mögliche Verfeinerungen

- Relativer Fehler ist systematisch negativ Grund: Simples Binning. Verbesserung möglich.
- Noch kleinere Fehler durch bessere Interpolation in (x, Q²)-Bins (Z.B. Splines) — prinzipiell möglich.

Analys	en			
PDFs 0000	PDFs & Jets: Prinzip 000	PDFs & Jets: Ergebnis	Stand der Arbeit	S & O 0000●

Bisher: Nur DIS in verschiedenen Phasenraumregionen.

- DESY-01-127: Dijets (10 GeV² < Q² < 10000 GeV²), 96/97, L = 38.4 pb⁻¹
- DESY-06-128: Incl. jets (Q² > 125 GeV²), 98-2000, L = 81.7 pb⁻¹
- DESY-06-128: Dijets (125 GeV² < Q^2 < 5000 GeV²), 98-2000, $\mathcal{L} = 81.7 \text{ pb}^{-1}$
- DESY-07-073: Incl. jets (150 GeV² < Q^2 < 15000 GeV²), 99/00, \mathcal{L} = 65.4 pb⁻¹
- H1 preliminary 07-035: Incl. jets (5 GeV 2 < Q^2 < 100 GeV 2), 99/00, \mathcal{L} = 43.6 pb $^{-1}$

Quelle	nverzeichnis			
PDFs 0000	PDFs & Jets: Prinzip	PDFs & Jets: Ergebnis	Stand der Arbeit	S & O 00000

Quellen der Abbildungen:

S.3 oben:

http://zms.desy.de/e548/e550/e6025/e76/index_ger.html

- S.4 oben: http://www.desy.de/~gbrandt/feyn/
- S.4 unten: http://www-zeus.desy.de/physics/phch/conf/eps07/index.html
- S.5: http://www-spires.dur.ac.uk/hepdata/zeus2002.html
- S.6 oben: www.arxiv.org/abs/hep-ph/0507093
- S.6 unten: http://www.desy.de/~gbrandt/feyn/
- S.10: http://www-spires.dur.ac.uk/hepdata/zeus2005.html
- S. 11: http://www.desy.de/~heralhc/proceedings/wg1-part2.pdf
- S. 15: "Asterix und die Trabantenstadt", Ehapa Verlag
- Rest: privat