Massive Bosonen aus supersymmetrischen Zerfällen im vollhadronischen Kanal bei CMS

Christian Autermann, Ulla Gebbert, Kolja Kaschube, Benedikt Mura, <u>Friederike Nowak</u>, Christian Sander, Peter Schleper, Torben Schum

Institut für Experimentalphysik, Universität Hamburg

05. März 2008

Bundesministerium für Bildung und Forschung

Übersicht

2 Rekonstruktionseffizienz von schweren Bosonen

3 Anreicherung gegen den kombinatorischen Untergrund

Einschränkung des supersymmetrischen Parameterraumes

CMS am LHC

Inbetriebnahme Mitte 2008

- *U* = 27km
- $\sqrt{s} = 14 \text{TeV}$
- £ bis zu 10³⁴ cm⁻² s⁻¹

Compact Muon Solenoid (CMS)

- 21 m lang und 16 m im Durchmesser
- 12500 Tonnen
- Magnetfeld von 3,8 Tesla

Supersymmetrie

Die Probleme des SM

- Keine Vereinigung der Eichkopplungen
- Fine Tuning Problem
- Kein Kandidat f
 ür Dunkle Materie vorhanden

Gleichzeitige Lösung durch Supersymmetrie

- Susy-Teilchen ändern das Laufen der Kopplungskonstanten
- Schleifenkorrekturen bei der Higgsmasse werden durch Susy-Teilchen (fast) aufgehoben
- LSP liefert Kandidaten für Dunkle Materie

mSugra

mSugra reduziert die Menge der Freiheitsgrade durch die Einführung der Supersymmetrie auf fünf: M_0 , $M_{1/2}$, A_0 , sign μ , tan β .

Für diese Analyse:

	LM4
M_0	210 GeV
$M_{1/2}$	285 GeV
A ₀	10
sign μ	+
$\tan\beta$	0
М _ã	700 GeV
М _ã	650 GeV
$\dot{M_{\chi^0}}$	110 GeV

Beispielzerfall

- *R*-Paritätserhaltung: paarweise Produktion
- Kaskadenartiger Zerfall
 → Vielteilchen (Jet)
 Endzustand
- LSP stabil $\rightarrow \not\!\!\!E_T$
- Entdeckung und Präselektion möglich
- In Kaskaden können Bosonen auftreten

Definition und Rekonstruktionseffizienz

Je zwei Jets werden zu einem Dijetobjekt kombiniert. Sie gelten als Bosonkandidaten, wenn

 $70 \text{GeV} < M_{\text{Dijet}} < 110 \text{GeV}$

Jetalgorithmus: Iterative Cone 0.5 $P_t^{
m jet} >$ 20 GeV, $|\eta^{
m jet}| <$ 2, 5

P_t klein: Töchter werden schlecht rekonstruiert

< 回 > < 三 > < 三 > 、

P_t groß: Töcher bilden einen gemeinsamen Jet

Diskriminierende Variablen : $\cos \theta^*$

Reinheit $R = \frac{N_{\text{Boson}}^{\text{Matched}}}{N_{\text{Boson}}}$

 θ^* ist der Winkel zwischen einem Tochterjet des Bosons in dessen Ruhesystem und der Bewegungsrichtung des Bosons

Diskriminierende Variablen : $\Delta \phi$ (Boson, $\not \!\!\! E_T$)

 $\Delta \phi = \phi_{\text{Boson}} - \phi_{\text{met}}$ ist der Winkel zwischen dem Boson und $\not\!\!E_T$

Bosonen aus supersymmetrischen Zerfällen

Diskriminierende Variablen : P_t^{Boson}

- Form der Verteilung für Bosonen ist abhängig von der Rekonstruktionseffizienz und der Stärke des Kaskadenboosts
- f
 ür den Untergrund gilt dies nicht
- Zusammenfassung der Schnitte:

Variable	Schnitt
$\cos heta^*$	$ \cos heta^* < 0,5$
P_t	$P_t > 140 { m ~GeV}$
	$P_t < 300 \text{ GeV}$
$\Delta \phi(\text{Boson}, E_{T, miss})$	$ \Delta \phi <$ 1,5

Weitere Untergrundunterdrückung : Top-Schnitt

- Bosonen aus Tops ebenfalls Untergrund
- ein Top kann mehrere Bosonkandidaten produzieren, da jede Kombination seiner Zerfallsprodukte im Boson-Massenbereich liegen kann
- falls f
 ür die Kombination des Bosonkandidaten mit drittem Jet gilt

 $160 < M_{\rm Trijet} < 220 \; {\rm GeV},$

dann wird Kandidat verworfen

Reinheit der Bosonkandidaten

90E 80 70 Reinheit $R = \frac{N_{\text{Boson}}^{\text{Matched}}}{N_{\text{Boson}}}$ Untergrund 60 loson SUS 50 on TOP Boson TOP 40 Verbesserung der Reinheit um 30 einen Faktor \sim 4, 5 20 10

	LM4 (vor Schnitten)	LM4 (nach Schnitten)
R _{Boson}	$\textbf{0},\textbf{122}\pm\textbf{0},\textbf{002}$	$\textbf{0},\textbf{459}\pm\textbf{0},\textbf{019}$
$R_{\text{Boson}}^{\text{Susy}}$	$0,104\pm0,002$	$\textbf{0},\textbf{449}\pm\textbf{0},\textbf{019}$
$R_{\text{Boson}}^{\text{Top}}$	$\textbf{0},\textbf{018}\pm\textbf{0},\textbf{001}$	$\textbf{0},\textbf{010}\pm\textbf{0},\textbf{004}$

0^{[1}

2

A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

n

Einschränkung des Parameterraumes I

- Hypothesenpunkte (rot) werden mit Pseudodatenpukten (schwarz) verglichen
- Da einige Punkte nur sehr kleinen Wirkungsquerschnitt haben, werden Schnitte gelockert

Variable	Schnitt
$\cos heta^*$	$ \cos heta^* < 0, 8$
P_t	$P_t > 120 { m ~GeV}$
	$P_t < 300 \text{ GeV}$
$\Delta \phi(\text{Boson}, E_{T, miss})$	$ \Delta \phi < 1,5$

$$A_{0}=$$
 0, sign $\mu >$ 0, tan $eta =$ 50

Einschränkung des Parameterraumes II

Die Observablen für den Vergleich sind

- die Anzahl der Ereignisse N_E,
- die Anzahl der Bosonkandidaten N_B nach allen Schnitten außer dem Topschnitt,
- das Verhältnis $r = \frac{N_B^{\text{Sury}}}{N_B^{\text{lop}}}$ der Bosonkandidaten, welche den Top-Schnitt überlebt haben, zu jenen, welche ihn nicht überlebt haben
- N_E und N_B sind sowohl über den systematischen und theoretischen als auch über den statistischen Fehler korreliert
- r wurde als unkorreliert angenommen

Datenpunkt *d* mit systematischem Fehler von 20% Hypothesenpunkt *h* mit theoretischem Fehler von 20% Korrelationsmatrix A

$$\chi^2 = (\boldsymbol{d} - \boldsymbol{h})^T \boldsymbol{A}^{-1} (\boldsymbol{d} - \boldsymbol{h})$$

(日本) (日本) (日本) 日本

Einschränkung des Parameterraumes III Pseudodatenpunkt LM4

Wahrscheinlichkeit $P = 1 - F(\chi^2(d, h)) = 1 - \int_0^{\chi^2(d, h)} f_n(\chi^{2'}) d\chi^{2'}$

 $P(\chi^2(N_E, N_B, r))$

 $P(\chi^2(N_E))$

Mit den zusätzlichen Observablen kann ein größerer Teil des Parameterraumes ausgeschlossen werden

F. Nowak (Hamburg)

Bosonen aus supersymmetrischen Zerfällen

Zusammenfassung und Ausblick

Zusammenfassung

- Je nach Zerfallskinematik ist die Anreicherung von hadronisch zerfallenden Bosonen auf bis zu 45% möglich
- Informationen über Bosonen ermöglichen bessere Einschränkung des supersymmetrischen Parameterraumes

Ausblick

- Particle Flow verspricht bessere Energieauflösung
- Verwendung von Multi-Varianter Methoden (wie z.B. Likelihood, Neuronales Netz, ...)
- Hinzunahme anderer Variablen zu Parametereinschränkung (siehe U. Gebbert)

Backup

F. Nowak (Hamburg)

Bosonen aus supersymmetrischen Zerfällen

05. März 2008 17 / 25

-2

3 1 4 3

Präselektion

Signal Signatur $E_{T,miss} > 200 \text{ GeV}$ $N_i > 3 \text{ mit } E_T > 30 \text{ GeV}$ $|n^{j(1)}| < 1,7$ QCD Unterdrückung $\delta \phi_{min}(E_{T,miss} - j(1,2,3)) \ge 0,3$ rad $R_1 > 0.5$ $R_2 > 0.5$ W/Z/tt Unterdrückung $Iso^{leadtrk} = 0$ P_leadtrk > 15 GeV $0,05 < f_{em(i(1))} < 0,9$ $0,05 < f_{em(i(2))} < 0,9$ Signal/Untergrund Optimierung $E_{T,j(1)} > 180 \, \text{GeV}$ $E_{T,i(2)} > 110 \text{ GeV}$ $H_{T} > 500 \, \text{GeV}$

Entdeckung durch generische Schnitte möglich

Ein Signal-zu-Untergrund-Verhältnis von ~ 27 kann erreicht werden. (Stark abhängig von Susy-Parametern) Jan Thomson, Diplomarbeit

Bosonen aus supersymmetrischen Zerfällen

Bosonkandidaten aus Tops

Kombination einer W-Tochter mit dem b-Quark aus einem Topzerfall für die

höherenergetische Tochter

niederenergetischere Tochter

3 > 4 3

Korrelationsmatrix

Datenpunkt *d* mit systematischem Fehler $\delta = 0, 2$ Hypothesenpunkt *h* mit theoretischem Fehler $\theta = 0, 2$ Korrelationsmatrix *A*

$$A = \left(\begin{array}{rrrr} a_{11} & a_{12} & 0 \\ a_{21} & a_{22} & 0 \\ 0 & 0 & a_{33} \end{array}\right)$$

mit

$$\mathbf{a}_{11} = {}_d\sigma_E^2 + \delta^2{}_dN_E^2 + {}_h\sigma_E^2 + \theta^2{}_hN_E^2,$$

$$\mathbf{a}_{12} = \mathbf{a}_{21} = \delta^2{}_dN_{Ed}N_B + \theta^2{}_hN_{Eh}N_B + \kappa_d\sigma_{Ed}\sigma_B + \kappa_h\sigma_{Eh}\sigma_B,$$

$$\mathbf{a}_{22} = {}_d\sigma_B^2 + \delta^2{}_dN_B^2 + {}_h\sigma_B^2 + \theta^2{}_hN_B^2$$

$$\mathbf{a}_{33} = {}_d\sigma_R^2 + {}_h\sigma_R^2.$$

э

Einschränkung des Parameterraumes IV Variation des systematischen Fehlers, LM4

für 0%, 10%, 20% und 30%

05. März 2008 21 / 25

Bosonen aus supersymmetrischen Zerfäller

F. Nowak (Hamburg)

Einschränkung des Parameterraumes V Pseudodatenpunkt HM4

 $P(\chi^2(N_E, N_B, r))$

 $P(\chi^2(N_E))$

< 17 × <

05. März 2008 22 / 25

э

Bosonen aus supersymmetrischen Zerfällen

Kanten im invarianten Massenspektrum am LM4 I

 $ilde{q}_L
ightarrow q \chi_1^\pm
ightarrow q W^\pm \chi_1^0$

- invariante Masse der beiden Töchter der Bosons, dessen vorlaufendes Parton q und des LSP ergeben die Squarkmasse
- bei der invarianten Masse ohne das LSP sind zwei kinematische Extrema möglich: Das vorlaufende Parton q wird parallel (links) oder antiparalell (rechts) zum Boson emittiert.

Kanten im invarianten Massenspektrum am LM4 II

$$ilde q_L o q\chi_1^\pm o qW^\pm\chi_1^0$$

M^{max} = 509 GeV , *M^{min}* = 306 GeV L. Pape, CMS IN 2006/012

- verschiedene Kaskaden produzieren verschiedene Massenkanten
- am LM4 links gezeigter Zerfall dominierend

Generatorniveau

Detektorniveau

Kanten im invarianten Massenspektrum am LM4 III

- Das vorlaufende Parton bildet im Detektor meistens den Pt-stärksten oder -zweitstärksten Jet (Abbildung links)
- kombiniere Bosonkandidaten mit erstem oder zweiten Jet
- Kaskaden sind stark geboostet, daher ist kleiner Winkel zum Vorläufer bevorzugt
- Winkel kann nicht zu klein werden, da sonst alle Partonen in einen Jet gefasst werden
- also Kombination des Bosonkandidaten mit dem der beiden Jets, welcher den kleineren Winkel hat und wenn $\Delta \Phi > 1$

