Studien zur Messung von Double-Parton-Scattering mit dem CMS-Detektor

Florian Bechtel, Peter Schleper, Hartmut Stadie (Univ. Hamburg) DPG Frühjahrstagung, Freiburg, März 2008

Underlying Event

- Double-Parton-Scattering: Y+3-Jet-Endzustände
- Photon-Nachweis mit dem CMS-Detektor

BMBF-Forschungsschwerpunkt "Elementarteilchenphysik mit dem CMS-Experiment"

ik an der TeV-Skala mit dem Large Hadron Collider

Compact Muon Solenoid

Pp-Streuung: Underlying Event

Underlying-Event

- Def. (theor.): "Alle Bestandteile einer pp/pp-Streuung bis auf den harten Prozeß." ↔ Def. (exp.)?
- Beschreibung: nicht-perturbative (Herwig Soft-UE) und perturbative Modelle (Pythia, Jimmy)

Bsp.: Multiple parton-parton interactions in Pythia

- Störungsrechnung bis $\hat{p}_T \rightarrow 0$ (für weitere QCD 2 \rightarrow 2 Prozesse) + Colour-Screening
- Pedestal-Effekt: kleiner Stoßparameter → höhere Wahrscheinlichkeit für MPI

Double-Parton-Scattering (Def.)

Double-Parton-Scattering (DPS):

• Zwei harte Wechselwirkungen in der gleichen Proton-Proton-Streuung

Liefert Information über...

- räumliche Verteilung von Partonen im Proton
- Parton-Parton-Korrelationen

Irreduzibler Untergrund am LHC:

- Produktion von zwei b-Quark-Paaren
- Beitrag zur Produktion von zwei W-Bosonen gleicher Ladung (→ Bedeutung für SUSY-Searches)

Experimenteller Nachweis in ...

- I. (jj)+(jj) i.e. "Mini-Jets" (Akzeptanz des Jet-Triggers ausreichend?)
- 2. (jj)+(bb) (b-tagging genügend verstanden?)
- 3. (γj)+(jj) d.h. γ + 3 Jets
 - größere Jet-Akzeptanz (vgl. 1. → Single-Photon-Trigger)
 - Photon-Kinematik präzise messbar

$DPS = \gamma j + jj$

> Analyse auf Generator-Niveau

- Kombiniere γ (MC Truth) mit 3 Jets (Midpoint-Cone, R=0.7) wobei $\Delta R_{ij} > 0.8$
- Wähle γj und jj-Paar \rightarrow Minimiere S:

Unterscheidung von DPS und Single-Parton-Scattering (SPS):

• ΔS - Azimuth zwischen γj - und jj-Paar

• Selektiere Ereignisse mit kleinem ΔS !

Generatorstudien

Arbitrary units

Pythia 6.413 p̂T > 20 GeV/c

- DWT (CMS Default)
- S0 (→ Colour reconnection)

▶ Pythia 8.1 p̂_T > 20 GeV/c

- Default (Physik ~ Pythia 6.4 S0)
- Multiple-parton-interactions ausgeschaltet
- Generation von zwei harten Jets (zusätzlich zu γj)

Herwig 6.510 p̂_T > 20 GeV/c

- Soft underlying event
- Jimmy 4.2

E_T (Photon und Jets) > 30 GeV/c Pythia 6.413 DWT Pythia 6.413 S0 Pythia 8.1 default Herwig 6.510 Soft UE 1.5 Pythia 8.1 no mpi \bigcirc Herwig 6.510 + Jimmy 4.2 Pythia 8.1 2nd hard jj Pythia mit MP 0.5 ohne MPI

ΔS (azim. angle b/w pairs) (rad)

\rightarrow große Unterschiede Pythia \leftrightarrow Herwig in Trennvariable Δ S

3

CSA07 photonjets-Skim

Computing Software Analysis (CSA) Challenge 2007:

- Alle MC-Samples aufgeteilt auf 6+IPrimary Datasets (basierend auf HLT-Information):
 - \rightarrow Electrons, Muons, Jets/Missing E_T, b-Jets, τ , γ , All Events
- Physics skimming zur weiteren Reduktion der Datenmengen, z.B. photonjets-Skim

Trigger	Prescale	Level I	Schwelle	Rate
single relaxed γ	/	LI_SingleEG15	40 GeV	2.8 ± 0.2 Hz
single isolated γ	/	LI_SingleIsoEG12	30 GeV	8.4 ± 0.7 Hz
	100	LI_SingleIsoEG10	I2 GeV	n/a
single jet	/	LI_SingleJet150	200 GeV	9.3 ± 0.1 Hz
	10	L1_SingleJet100	I50 GeV	3.5 ± 0.0 Hz
	100	LI_SingleJet70	II0 GeV	I.5 ± 0.0 Hz
	I 0 ⁴	LI_SingleJet30	60 GeV	0.8 ± 0.4 Hz
	10 ⁵	LI_SingleJet15	30 GeV	n/a

e/γ-Messung im CMS ECAL

CMS ECAL: Szintillator-Kristall-Kalorimeter

- 80000 Blei-Wolframat-Kristalle (PbWO4), Molière-Radius 22 mm
- Kristallfläche: 22x22 mm² (Barrel) ... 30x30 mm² (Endkappen)
- Kristallänge ~ 26 X₀ : 23 cm (Barrel) ... 22 cm (Endkappen)
- Preshower-Detektor (Endkappen, 1.65 < $|\eta| < 2.6$) $\rightarrow \gamma/\pi^0$ -Separation

Effizienzbestimmung

Bestimmung aus den Daten:

• Di-Elektron-Skim (*zToEE*)

Clustering-Effizienz:

- Kombiniere Elektron (*tag*) und Spur (*probe*), so dass M(e, Spur) ~ M_Z
- → passender ECAL Super-Cluster zur Spur?

Selection:

- Elektron: $E_T > 15$ GeV, isoliert gegen weitere Spuren, "golden" Elektron
- Spur: $P_T > 20$ GeV/c, isoliert gegen weitere Spuren

Matching:

• Suche Super-Cluster mit $E_T > 5$ GeV und $\Delta \eta$ (Spur)<0.03, ΔR (Spur)<0.1

Clustering-Effizienz

Effizienzbestimmung aus zToEE-Skim:

• 35 GeV/c $< P_T < 50$ GeV/c

UH

e/y-ldentifikation

florian.bechtel@desy.de

DPG 2008 Freiburg

Zusammenfassung

Underlying-Event

• Alle Modelle: mehr als eine harte Wechselwirkung pro Proton-Proton-Streuung

Double-Parton-Scattering (= zwei harte Wechselwirkungen)

- Mess-Strategie im Endzustand γ +3 Jets vorgestellt
- Trennvariable ΔS (= Azimuth zwischen Paaren)
- Vergleich verschiedener Ereignisgeneratoren:
 große Unterschiede zwischen Pythia und Herwig/Jimmy

Photon-Nachweis mit dem CMS-Detektor

- Effizienz: tag & probe
- Identifikation: Cluster-Shapes

Erwarten starke Verbesserung von Underlying-Event-Modellen mit 2008/09-Daten

