Zweijet-Analyse in tiefunelastischer ep-Streuung

Holger Enderle

Einleitung

Motivatior

Analyse Daten und Theor Ereignisselektion Jetselektion Zweijet-Variabler

Ausblick

Messung von Zweijet-Wirkungsquerschnitten in tiefunelastischer ep-Streuung am ZEUS-Experiment bei HERA

Holger Enderle, Jörg Behr, Robert Klanner, Peter Schleper, Thomas Schörner-Sadenius, Thorben Theedt (UHH/DESY)

4th March 2008

Übersicht

Zweijet-Analyse in tiefunelastischer ep-Streuung

Holger Enderle

Einleitung

Motivation

Analyse Daten und Theor Ereignisselektion

Zweijet-Variablen Wirkunsquerschnitte

Ausblick

Einleitung

Motivation

• Warum Zweijet-Ereignisse?

Analyse

- Daten und Theorie
- Ereignisselektion
- Jetselektion
- Zweijet-Variablen
- Wirkungsquerschnitte

Zusammenfassung und Ausblick

Einleitung: HERA

Zweijet-Analyse in tiefunelastischer ep-Streuung

Holger Enderle

Einleitung

Motivation

Analyse Daten und Theorie Ereignisselektion Jetselektion Zweijet-Variablen Wirkunsquerschnitt

Ausblick

HERA war der weltweit einzige Lepton-Proton Beschleuniger.

- Strahlenergien: 27.5 GeV Leptonen, 920 GeV Protonen
 - Schwerpunktsenergie: $\sqrt{s} \approx 318 \, \text{GeV}$

In 15 Jahren Laufzeit lieferte HERA \sim 780 pb^{-1} int. Luminosität. Ende Juni 2007 wurde HERA für immer abgeschaltet.

Einleitung: ZEUS

Zweijet-Analyse in tiefunelastischer ep-Streuung

Holger Enderle

Einleitung

Motivation

Analyse Daten und Theorie Ereignisselektion Jetselektion Zweijet-Variablen Wirkunsquerschnit

Ausblick

tiefunelastische ep-Streuung

570 pb⁻¹ integrierte Luminosität

Photonvirtualität \mathbf{Q}^2 : Maß für Auflösung ($\mathbf{Q}^2 = -q^2$)

ZEUS

aufgezeichnet

Bjorken-Skalenvariable x_{Bj} : Proton-Impulsbruchteil des wechselwirkenden Quarks

Motivation: Warum Zweijet-Ereignisse?

Zweijet-Analyse in tiefunelastischer ep-Streuung

Holger Enderle

Einleitung

Motivation

Analyse Daten und Theorie Ereignisselektion Jetselektion Zweijet-Variablen Wirkunsquerschnitt

Ausblick

- Direkter Zugriff auf starke Kopplung (α_s) erst bei mindestens zwei Jets
- Bestimmung der Partondichten (PDFs) des Protons möglich
 - Insbesondere: sensitiv auf Gluondichte durch Boson-Gluon-Fusion
- Test der Universalität der PDFs durch Vergleich mit anderen Experimenten
- Gute Kenntnis von α_s und den PDFs ist Voraussetzung für ein genaues Verständnis von Prozessen in Hadron-Hadron-Kollisionen (LHC)

Analyse: Daten und Theorie

Zweijet-Analyse in tiefunelastischer ep-Streuung

Holger Enderle

Einleitung

Motivation

Analyse

Daten und Theorie Ereignisselektion Jetselektion Zweijet-Variablen Wirkunsquerschnitte

Daten	für	diese	Analyse:
-------	-----	-------	----------

Zeitraum	Leptonen	Luminosität
1998/1999	Elektronen	16.7 pb ⁻¹
1999/2000	Positronen	65.0 pb ⁻¹
2004	Positronen	21.7 pb ⁻¹
2004-2006	Elektronen	180.7 pb ⁻¹
2006/2007	Positronen	135.9 pb ⁻¹
		∑ 420.0 pb ^{−1}

Monte Carlo-Simulationen in führender Ordnung ($O(\alpha_s^1)$) für die Korrektur der Daten (Detektor-Effekte, Trigger-Effizienz)

QCD-Rechnungen in nächstführender Ordnung ($O(\alpha_s^2)$) zum Vergleich mit den gemessenen Wirkungsquerschnitten

Analyse: Ereignisselektion

Zweijet-Analyse in tiefunelastischer ep-Streuung

Holger Enderle

Einleitung

Motivation

Analyse Daten und Theorie Ereignisselektion Jetselektion Zweijet-Variablen Wirkunsquerschnit

Ausblick

Phasenraumschnitte:

- $\bullet \ 125 \, {\rm GeV}^2 < Q^2 < 5000 \, {\rm GeV}^2$
 - Unsicherheiten auf den theo.
 Vorhersagen klein
- $-0.65 < \cos \gamma_{\rm h} < 0.65$
 - hadronisches System gut messbar im Detektor

Säuberungsschnitte:

- Elektron mit $E_{\rm el} > 10 \,{\rm GeV}$ (Auflösung $\sim \frac{1}{\sqrt{E}}$)
- $|Z_{Vtx}| \lesssim 30 \, \text{cm}$ (Restgas-Untergrund)
- $45 \,\mathrm{GeV} < E p_z < 62 \,\mathrm{GeV}$ (Photoproduktions-Untergrund)
- $\frac{p_T}{\sqrt{E_T}} < 2.5 \sqrt{{
 m GeV}}$ (CC-Untergrund, kosmische Myonen)
- und weitere Schnitte

Analyse: Kontrollverteilungen

Gute Beschreibung der Daten durch die beiden verwendeten Monte Carlo-Modelle Ariadne und Lepto

Analyse: Jet-Rekonstruktion

Zweijet-Analyse in tiefunelastischer ep-Streuung

Holger Enderle

Einleitung

Motivation

Analyse Daten und The

Ereignisselektion

Jetselektion

Zweijet-variablen Wirkunsquerschnitte

Ausblick

• Breit-Bezugssystem ($2x_{Bj}\overrightarrow{P} + \overrightarrow{q} = 0$): ausgetauschtes Photon und Parton aus dem Proton kollidieren "frontal"

hohe Transversalenergie im hadronischen Endzustand weist auf harten QCD-Prozess hin

 Jet-Rekonstruktion mit dem longitudinal invarianten k⊥-Algorithmus im inklusiven Modus im Breit-System

Analyse: Zweijetselektion

Zweijet-Analyse in tiefunelastischer ep-Streuung

Holger Enderle

Einleitung

Motivation

Analyse Daten und Theor Ereignisselektion Jetselektion

Zweijet-Variablen Wirkunsquerschnitte

Ausblick

Phasenraumschnitte:

Mindestens zwei Jets im Bereich:

• $-2.0 < \eta_{\text{Breit}} < 1.5$ (Pseudorapidität $\eta = -\ln(\tan \frac{\theta}{2})$) (Detektorregion mit guter Akzeptanz)

Asymmetrischer Schnitt auf die Transversalenergie der Jets:

•
$$E_{T,Breit}^{Jet1} > 12 \, \text{GeV}$$

• $E_{T,Breit}^{Jet2} > 8 \, \text{GeV}$

Analyse: Zweijet-Variablen

Zweijet-Analyse in tiefunelastischer ep-Streuung

Holger Enderle

Einleitung

Motivation

Analyse Daten und Theorie Ereignisselektion Jetselektion Zweijet-Variablen

Wirkunsquerschnitte

Ausblick

Wirkungsquerschnitte differentiell in:

- Photonvirtualität Q²,
- Bjorken-Skalenvariable x_{Bj},
- mittlere Transversalenergie $\bar{E}_{T,Breit}$,
- invariante Zweijet-Masse $M_{jj} = \sqrt{(p_{Jet1} + p_{Jet1})^2}$,
- Differenz der Rapiditäten $\eta' = \frac{1}{2} |\eta_{Breit}^{Jet1} \eta_{Breit}^{Jet2}|$ (Iorentzinvariant),
- Impulsbruchteil des Partons aus dem Proton bei Zweijet-Ereignissen $\xi = x_{Bj} \left(1 + \frac{M_{ij}^2}{Q^2}\right)$

Analyse: Wirkungsquerschnitte

- gelbes Band systematische Unsicherheit auf der Jet-Energieskala

Analyse: Wirkungsquerschnitte

Fazit: Gute Beschreibung der Daten durch die QCD-Rechnungen

Analyse: Wirkungsquerschnitte

Fazit: Gute Beschreibung der Daten durch die QCD-Rechnungen

Zusammenfassung und Ausblick

Zweijet-Analyse in tiefunelastischer ep-Streuung

Holger Enderle

Einleitung

Motivation

Analyse Daten und Theorie Ereignisselektion Jetselektion Zweijet-Variablen Wirkunsquerschnitt

Ausblick

Zusammenfassung:

- Analyse von Zweijet-Ereignissen
- Kombination der Daten 1998-2006 (284 pb⁻¹)
- Gute Beschreibung der Wirkungsquerschnitte durch die QCD-Rechnungen

Ausblick:

- Einbeziehen der 2006/2007 Positron Daten (dann: 420 pb⁻¹)
- "grand reprocessing" der gesamten Daten
 - Kalibrationen, Spurrekonstruktion, ...
- finale Wirkungsquerschnitte