

Aufbau eines Messstandes zur Untersuchung von Strahlenschäden durch Röntgenstrahlung für XFEL Pixeldetektoren

Hanno Perrey¹, Friederike Januschek^{1,2}, Robert Klanner¹, Eckhart Fretwurst¹ und Fabian Renn³

> ¹Institut für Experimentalphysik, Universität Hamburg ²DESY, Hamburg ³Sommerstudent am DESY, Universität Heidelberg

3. März, DPG Freiburg 2008

A D b 4 A b

Gliederung

2

イロト イヨト イヨト イヨト

Gliederung

Einleitung

- Röntgenlaserprojekt XFEL
- Synchrotronstrahlungslabor HASYLAB
- Strahlrohr F3 am HASYLAB
- Dosisbestimmung

Experimenteller Aufbau

(4) (5) (4) (5)

< 17 ▶

Das europäische Röntgenlaserprojekt XFEL

Das europäische Röntgenlaserprojekt XFEL

- Spitzenbrillanz viele Größenordnungen über der bisheriger Röntgenquellen
- integrierte Photonflüsse bis zu $10^{12} \gamma / \text{Pixel}$ $\hat{=} 10^9 \text{ Gy} [10^9 \text{ J/kg}]$
- XFEL: Photonenergien im Bereich von 10 keV

< 17 ▶

3

Das europäische Röntgenlaserprojekt XFEL

- Spitzenbrillanz viele Größenordnungen über der bisheriger Röntgenquellen
- integrierte Photonflüsse bis zu $10^{12} \gamma / \text{Pixel}$ $\hat{=} 10^9 \text{ Gy} [10^9 \text{ J/kg}]$
- XFEL: Photonenergien im Bereich von 10 keV

Neuer Strahlendosis-Bereich

- Detektoren und Elektronik müssen auf Strahlenhärte überprüft werden
- → Brauchen Testanlage zum Bestrahlen

Hanno Perrey (Uni Hamburg)

Hamburger Synchrotronstrahlungslabor (HASYLAB)

HASYLAB

- am e⁻ Speicherring DORIS III
- 33 Strahlrohre führen Synchrotronstrahlung zu den Experimentierhütten
- Spektrum reicht von Infrarot (2 eV) zu harter Röntgenstrahlung (200 keV)

Strahlrohr F3 am HASYLAB

Hanno Perrey (Uni Hamburg)

Dosisbestimmung

Abbildung: verwendete Photodiode

Wie man Dosis D bestimmt

- Man nehme eine Photodiode
- Aus Strahl-, Absorptions- und Diodenparametern D(I_{photo}) theoretisch herleiten
 - Photostrom *I_{photo}* bei Bestrahlung messen
 Dosis ausrechnen:

 $D = t_{bestrahlung} \cdot I_{photo} \cdot 6.848 \cdot 10^5 \, \mathrm{Gy/C}$

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Dosisbestimmung

Abbildung: verwendete Photodiode

Wie man Dosis D bestimmt

- Man nehme eine Photodiode
- Aus Strahl-, Absorptions- und Diodenparametern D(I_{photo}) theoretisch herleiten
- Photostrom I_{photo} bei Bestrahlung messen
- Dosis ausrechnen:

$$D = t_{bestrahlung} \cdot I_{photo} \cdot 6.848 \cdot 10^5 \, \mathrm{Gy/C}$$

A (10) A (10)

Dosisbestimmung

Abbildung: verwendete Photodiode

Wie man Dosis D bestimmt

- Man nehme eine Photodiode
- Aus Strahl-, Absorptions- und Diodenparametern D(Iphoto) theoretisch herleiten
- Photostrom I_{photo} bei Bestrahlung messen
- Dosis ausrechnen:

$$D = t_{bestrahlung} \cdot I_{photo} \cdot 6.848 \cdot 10^5 \, \mathrm{Gy/C}$$

Messproblem: Photostrom Iphoto sättigt bei hohen Dosisraten!

- Ermittle bei kleinen Dosisraten empirisch D(I_{DORIS})
 - Berechne Dosis aus DORIS-Strahlstrom I_{DORIS}

Hanno Perrey (Uni Hamburg)

Untersuchung von Strahlenschäden

Gliederung

Einleitung

2 Experimenteller Aufbau

- Aufbau am Strahlrohr F3
- Aufbau des Spitzenmessplatzes im Detektor-Labor

(4) (5) (4) (5)

< 17 ▶

Aufbau am Strahlrohr F3

Elemente in Strahlrichtung:

- Chopper
 - nur 1/200 1/10 Strahl
 - abmontierbar
 - Dosisrate 0,5 150 kGy/s
- Kollimator
 - Bestrahlungsfläche genau einstellbar
- Probenhalterung
 - nimmt Keramik auf
 - Kontakte per Feder gesetzt
 - Wasserkühlung auf 20° C
- Aufbau mit Motor ausgestattet
 - senkrecht zur Strahlebene bewegbar
 - Probe abscannbar
 - Motor PC-gesteuert

Aufbau am Strahlrohr F3

Elemente in Strahlrichtung:

- Chopper
 - nur 1/200 1/10 Strahl
 - abmontierbar
 - Dosisrate 0,5 150 kGy/s
- Kollimator
 - Bestrahlungsfläche genau einstellbar
- Probenhalterung
 - nimmt Keramik auf
 - Kontakte per Feder gesetzt
 - Wasserkühlung auf 20° C
- Aufbau mit Motor ausgestattet
 - senkrecht zur Strahlebene bewegbar
 - Probe abscannbar
 - Motor PC-gesteuert

Aufbau am Strahlrohr F3

Hanno Perrey (Uni Hamburg)

Untersuchung von Strahlenschäden

DPG Freiburg 2008 11 / 14

Temperaturentwicklung während der Bestrahlung

- Temperatur w\u00e4hrend Bestrahlung aus zwei auf der Probe angebrachten Sensoren (PT100-Elemente) ausgelesen
- Maximale Temperatur: ~ 26° C (ΔT ≈ 5° C), mit Chopper bzw. ~ 36° C (ΔT ≈ 12° C), ohne Chopper
- Stabile Temperatur nach ~ 1 Stunde mit Chopper bzw. nach 10 Minuten ohne Chopper erreicht

Hanno Perrey (Uni Hamburg)

Aufbau des Spitzenmessplatzes im Detektor-Labor

Anschluss der Proben:

- Spitzenmessplatz
- Box mit Probenhalterung

Geräte:

- Strommessgeräte
- LCR-Meter (Kapazitätsmessung)
- Spannungsquellen
- Thermometer
- Geräteansteuerung über PC

ヘロマ ヘビマ ヘビマ ヘビマ

Auslesen der Daten:

LabVIEW PC-Software

Hanno Perrey (Uni Hamburg)

Aufbau des Spitzenmessplatzes im Detektor-Labor

Anschluss der Proben:

- Spitzenmessplatz
- Box mit Probenhalterung

Geräte:

- Strommessgeräte
- LCR-Meter (Kapazitätsmessung)
- Spannungsquellen
- Thermometer
- Geräteansteuerung über PC

Auslesen der Daten:

LabVIEW PC-Software

Hanno Perrey (Uni Hamburg)

Untersuchung von Strahlenschäden

DPG Freiburg 2008 13 / 14

Zusammenfassung

Was wir erreicht haben

- aufgebaute Anlage erlaubt Bestrahlungen in neuem Dosisbereich
- Detektoren und Elektronik können bestrahlt werden
- Anlage wurde bereits vom Max-Planck-Institut, vom Paul-Scherrer-Institut und f
 ür eigene Messungen genutzt

A B F A B F