Introduction to Monte Carlo Event Generation Lecture 3: Hadronization

Peter Richardson

IPPP Durham

MCnet School: 5th August

Hard Process, usually calculated at leading order

Higher Order Corrections

- When we draw Feynman diagrams we are performing a perturbative expansion in the (hopefully) small coupling constant.
- Unfortunately the strong coupling often isn't very small, at the Z^0 mass, $\alpha_S(M_Z)=0.118$.
- We therefore need to consider higher orders in the perturbative expansion.
- There are always two types of correction:
 - real gluon emission;
 - virtual gluon loops.

Virtual Gluon Corrections

■ There are three diagrams involving virtual gluon loops.

- This contribution is also divergent, but negative.
- This will cancel the real divergence to give a finite answer.

Total Cross Section

- To show this we need to regularize both the real and virtual cross sections and add them together. Should then be finite when we remove the regularization.
- The standard way of doing this is to work in $d=4-2\epsilon$ dimensions where to regularize these infrared divergences $\epsilon < 0$.
- In this case

$$\sigma_{\rm real} = \sigma_0 C_F \frac{\alpha_S}{2\pi} H(\epsilon) \left(\frac{4}{\epsilon^2} + \frac{3}{\epsilon} + \frac{19}{2} - \pi^2 + \mathcal{O}(\epsilon) \right)$$

$$\sigma_{\rm virtual} = \sigma_0 C_F \frac{\alpha_S}{2\pi} H(\epsilon) \left(-\frac{4}{\epsilon^2} - \frac{3}{\epsilon} - 8 + \pi^2 + \mathcal{O}(\epsilon) \right)$$

■ The sum is finite as $\epsilon \to 0$.

Total Cross Section

So putting it all together

$$R(e^+e^-) = R_0(e^+e^-)\left(1 + \frac{\alpha_s}{\pi}\right)$$

One way of measuring the strong coupling

$$\alpha_S(m_Z) = 0.1226 \pm 0.0038.$$

taken from the PDG.

- The second and third order corrections, and the results for the next-to-leading order corrections including quark masses are also known.
- So we can calculate the higher order corrections to the total cross section, what about more complicated observables?

Higher Order Corrections

- As the two separate parts of the NLO cross section are infinite calculating the cross section numerical is a problem.
- However, we can use the universal properties to construct a subtraction counter-term which has the same singularities as the matrix element for real emission.
- Pick a counter-term which can be analytically integrated in $d=4-2\epsilon$ dimensions and added to the virtual piece

$$d\sigma = B(v)d\Phi_v + (V(v) + C(v,r))d\Phi_r d\Phi_v + (R(v,r) - C(v,r))d\Phi_v d\Phi_r$$

Hadronization

- Partons aren't physical particles: they can't propagate freely.
- We therefore need to describe the transition of the quarks and gluons in our perturbative calculations into the hadrons which can propagate freely.
- We need a phenomenological model of this process.
- There are three models which are commonly used:
 - Independent Fragmentation;
 - Lund String Model;
 - Cluster Model.

Independent Fragmentation Model: Feynman-Field

- The longitudinal momentum distribution is given by an arbitrary fragmentation function which is a parameterization of data.
- The transverse momentum distribution is Gaussian.
- The algorithm recursively splits $q \rightarrow q' + \text{hadron}$.
- The remaining soft quark and antiquark are connected at the end.
- The model has a number of flaws:
 - strongly frame dependent;
 - no obvious relation with the perturbative physics;
 - not infrared safe:
 - not a confinement model;
 - wrong energy dependence.

Confinement

■ We know that at small distances we have asymptotic freedom and the force between a quark-antiquark pair is like that between an e^+e^- pair.

But at long distances the self interactions of the gluons make the field lines attract each other.

Confinement

- Gives 1/r potential at short distances
- Linear potential at long distances and confinement.

$$V(r) \sim -\frac{4}{3} \frac{\alpha_S}{r} + \kappa r \sim -\frac{0.13}{r} + r$$

for $\alpha_S \sim 0.5$, r in fm and V in GeV.

 Either phenomenogically from quarkonium or lattice QCD.

Lund String Model

- Assume $\frac{1}{r}$ important for hadron structure but not production.
- In QCD the field lines seem to be compressed into a tube-like region, looks like a string.
- So we have linear confinement with a string tension,

$$F(r) \approx \text{const} = \kappa \approx 1 \,\text{Gev/fm}.$$

■ Separate the transverse and longitudinal degrees of freedom gives a simple description as a 1+1 dimensional object, the string, with a Lorentz invariant formalism.

Mesons

- In the string model mesons are light $q\bar{q}$ pairs connected by a string.
- \blacksquare $\ell = 0$ messons only have 'yo-yo' modes

Area law $m^2 = 2\kappa^2$.

Lund String Model

- Start by considering a $q\bar{q}$ pair produced in e^+e^- annihilation.
- Ignore gluon radiation for the time being.
- \blacksquare q and \bar{q} joined by a string.
- $q\bar{q}$ pairs are created by tunnelling in the intense chromomagnetic field of the string.

$$rac{\mathrm{d}\mathcal{P}}{\mathrm{d}x\mathrm{d}t}\propto\exp\left(-\pirac{m_q^2}{\kappa}
ight)$$

- The string breaks into mesons long before the yo-yo point.
- Gives a simple but powerful picture of hadron production.

Lund String Model

Lund Fragmentation Function

- Fermi motion is a gaussian transverse momentum distribution
- The tunnelling probability becomes

$$\frac{\mathrm{d}\mathcal{P}}{\mathrm{d}x\mathrm{d}t} \propto \exp\left[-b\left(m_q^2 + p_\perp^2\right)\right]$$

- The string picture constrains the fragmentation function
 - Lorentz invariance
 - Acausality
 - Left-right syymetry
- The function has the form

$$f(z) \propto z^{a_{\alpha}-a_{\beta}-1}(1-z)^{a_{\beta}}$$

where $a_{\alpha,\beta}$ are adjustable parameters for quarks α and β .

 \blacksquare a, b and m_q are the main tuneable parameters of the model.

Three-jet Events

- So far we have only considered the hadronization of $q\bar{q}$ pairs, what about gluons?
- The gluon gives a kink on the string.

- the string effect
- The string model has an infrared safe matching with the parton shower.
- Gluons with $k_{\perp} < \frac{1}{\text{string width}}$ irrelevant.

String Effect

- Less radiation between the quark and antiquark.
- Either non-perturbatively via the string model.
- Can get the same result perturbatively via colour coherence.

Summary of the String Model

- String model strongly physically motivated.
- Very successful fit to data.
- Universal: fitted to e^+e^- data little freedom elsewhere.
- How does motivation translate to prediction?
- ~one free parameter per hadron/effect!
- Blankets too much perturbative information?
- Can we get by with a simpler model?

Preconfinement

- In the planar approximation, large number of colours limit:
 Gluon = colour-anticolour pair
- We can follow the colour structure of the parton shower.
- At the end colour-singlet pairs end up close in phase space.
- Non-perturbatively split the gluons into quark-antiquark pairs.

Preconfinement

- The mass spectrum of colour-singlet pairs is asymptotically independent of energy and the production mechanism.
- It peaks at low mass, of order the cut-off Q_0 .
- Decreases rapidity for large cluster masses.

Cluster Model

- Project the colour-singlet clusters onto the continuum of high-mass mesonic resonances (=clusters).
- Decay to lighter well-known resonances and stable hadrons using a pure 2-body phase-space decay and phase space weight.

$$W \propto (2s_1+1)(2s_2+1)\frac{2p^*}{m}$$

- The hadron-level properties are fully determined by the cluster mass spectrum, i.e. by the properties of the parton shower.
- Heavier hadrons, including baryons and strange hadrons supressed.
- The cut-off Q_0 is the crucial parameter of the model.

Cluster Model: Problems

- 1 Tail of high-mass clusters for which cluster decay is not a good approximation.
 - Split heavy clustera into two lighter clusters along "string" direction.
 - $\sim 15\%$ of clusters in e^+e^- collisions at m_Z but gives $\sim \frac{1}{2}$ of the hadrons.
- 2 Sensitivity to particle content.
 - only include complete multiplets.
 - change model so adding new heavy particles doesn't effect decay of light clusters.
- 3 Leading hadrons are too soft
 - Perturbative guarks remember their direction

$$P(\theta^2) \sim \exp\left(-\frac{\theta^2}{2\theta_0^2}\right)$$

- String like and extra parameter.
- 4 Problems with particle correlations.

The "Beliefs"

There are two main schools of thought in the event generator community.

PYTHIA

- Hadrons are produced by hadronization. You must get the nonperturbative dynamics right.
- Better data has required improvements to the perturbative simulation.
 - There ain't no such thing as a good parameter-free description.

HERWIG

- Get the perturbative physics right and any hadronization model will be good enough
- Better data has required changes to the cluster model to make it more string-like.

Hadrochemistry

Identified Particle Spectra

The facts?

- Independent fragmentation doesn't describe the data, in particular the energy dependence.
- All the generators give good agreement for event shapes.
- HERWIG has less parameters to tune the flavour composition and tends to be worse for identified particle spectra.
- Baryon production is often a problem.

Baryon Production

- All the models have some problems with baryon production.
- In the Lund model baryons are picture as quark quarks attached to a common centre, a colour source/sink

At large separation two of the quarks are tightly bound, a diquark.

■ The diquark is treated as a colour antitriplet $(3 \otimes 3 = \bar{3} \oplus 6)$

Baryon Production

- Two quarks can tunnel nearby in phase space: baryon—antibaryon pair
- In the string model either use diquarks, with an extra parameter for each diquark.
- or the pop-corn model.
- In the cluster model allow diquarks to be produced in cluster decay (always) or non-pertrubative gluon splitting (allowed in some variants).

Baryon Production

Universality

- Evolution to a universal, low hadronization scale ensures the hadronization parameters are universal.
- Don't need to retune at each energy.
- Only have to tune the new hadron specific parameters in hadronic collisions.

Local Hadron-Parton Duality

- Analytic approach, continue shower evolution to $Q \sim \Lambda_{\rm QCD}$, or lower with a non-perturbative model for $\alpha_{\rm S}$.
- Describes the momentum spectra $\frac{dn}{dx_n}$ but not identified particles.
- Gives the correction power corrections (renormalons), e.g

$$\langle 1 - T \rangle = a\alpha_S(E) + b\alpha_S^2(E) + \frac{c}{F}$$

Hadron Properties

- Hadronization produces hadrons so we need both the hadron properties: quark content; spin; mass; width; etc..
- and to decide which hadrons to produce.
- Many of the hadrons produced during hadronization (primary hadrons) are unstable so we also need to know how they decay to secondary hadrons.
- Not just a matrer of typing in the PDG:
 - not all resonances in a given multiplet have been measured;
 - measured branching fractions rarely add up to exactly 100%;
 - measured branching fractions rarely exactly respect isospin;
- Also need to make a lot of choices for the matrix elements to describe the various decay modes.

Hadron Properties

- Often not even numerical values for partial widths.
- Particles decaying into final-states which are nt allowed for on-shell masses, e.g. $h'_1 \rightarrow K\bar{K}^*$.
- In some cases the choice of decay modelling effects the decay tables, e.g. $a_1 \rightarrow \rho \pi$ vs. $a_1 \rightarrow \pi \pi \pi$.

Hadron Decays

- FORTRAN event generators typically used external packages:
 - TAUOLA τ lepton decays;
 - PHOTOS QED radiation in decays;
 - **EVTGEN** hadron, especially *B* meson decays.
- Originally expected more of this in the new generation of programs.
- But better modelling requires passing more information between the different stages of event generation.
- Also many problems with interfaces.
- Net result: better simulation of hadron and τ lepton decays in all the new event generators and less use of external packages.

$$H^0, A^0 \rightarrow au^+ au^- \rightarrow \pi^+\pi^-
u_ auar
u_ au$$

$au o ho(a_1) u_{ au} o \pi\pi(\pi) u_{ au}$

B decays

Inclusive Observable for B^+ decay

Summary

- Hadronization is described by non-perturbative models.
- Modern hadronization models give a good description of a wide range of processes.
- The parameters are universial allowing predictions once they are tuned to data.
- Don't forget about the hadron properties and decays.