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Master equation for hadron 
colliders

Parton-level cross section from matrix elements: model 
and process dependent

Parton density (or distribution) functions: process 
independent

Differences between colliders given by parton 
luminosities
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Parton density 
functions

Parton-level 
(differential) 
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Rikkert Frederix

Perturbative expansion
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Perturbative expansion

The parton-level cross section can be computed as a series in 
perturbation theory, using the coupling constant as an expansion 
parameter, schematically:
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Perturbative expansion

The parton-level cross section can be computed as a series in 
perturbation theory, using the coupling constant as an expansion 
parameter, schematically:

Including higher corrections improves predictions and reduces 
theoretical uncertainties
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Improved predictions

Remember, predictions are inclusive: also at LO initial state radiation 
is included via the PDF; final state radiation by the definition of the 
parton, which represents all final state evolutions

Can be made explicit by using a parton shower (which is unitary)

Due to these approximations, Leading Order predictions can depend 
strongly on the renormalization and factorization scales

Including higher order corrections reduces the dependence on these 
scales
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Going NLO

At NLO the dependence on the renormalization and factorization scales is 
reduced

First order where scale dependence
in the running coupling and the
PDFs is compensated for via the loop
corrections: first reliable estimate
of the total cross section

Better description of final state:
 impact of extra radiation included
(e.g. jets can have substructure)

Opening of additional initial state
partonic channels
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NLO corrections

NLO corrections have three parts:

The Born contribution, i.e. the Leading order.

Virtual (or Loop) corrections: formed by an amplitude with a 
closed loop of particles interfered with the Born amplitudes

Real emission corrections: formed by amplitudes with one 
extra parton compared to the Born process

Both Virtual and Real emission have one power of αs extra 
compared to the Born process
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NLO predictions

As an example, consider Drell-Yan Z/γ* production
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NLO predictions

As an example, consider Drell-Yan Z/γ* production
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NLO predictions

As an example, consider Drell-Yan Z/γ* production
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NLO predictions

As an example, consider Drell-Yan Z/γ* production
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Going NNLO...?

NNLO is the current state-of-the-art. There are only a few complete results 
available, but this year great progress has been made and NNLO results for 
ttbar, H+1j, dijet appeared

Why do we need it?

An NNLO calculation gives control
of the uncertainties in a calculation

It is “mandatory” if NLO corrections are
very large to check the behavior of the
perturbative series

It is the best we have! It is needed for
Standard Candles and very precise tests
of perturbation theory, exploiting all the available information, e.g. for 
determining NNLO PDF sets
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Predictions at NNLO

Why?

● A NNLO computation gives control on the 
uncertainties of a perturbative calculation.

● It’s “mandatory” if NLO corrections are very large to 
check the behaviour of the perturbative series

● It’s the best we have! It is needed for Standard Candles 
and for really exploiting all the available information, for 
example that of NNLO PDF’s.
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Higgs predictions at NNLO

LO calculation is not reliable,

but the perturbative series stabilizes 
at NNLO

NLO estimation of the uncertainties 
(by scale variation) works reasonably 
well
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Higgs predictions at NNLO

• LO  calculation is not reliable.

• The perturbative series stabilizes. 

•NLO estimation of higher orders 
effects by scale uncertainty works 
reasonably well.

Wednesday 2 May 2012



Rikkert Frederix
Fabio Maltoni CERN Academic Training Lectures - May 2012

 [GeV] HM
100 200 300 400 500 1000

 H
+

X
) 

[p
b

] 
  

 
!

(p
p

 
"

-210

-110

1

10
= 7 TeVs

L
H

C
 H

IG
G

S
 X

S
 W

G
 2

0
1

0

 H (NNLO+NNLL QCD + NLO EW)

!
pp 

 qqH (NNLO QCD + NLO EW)

!pp 

 W
H (NNLO QCD + NLO EW

)

!
pp 

 ZH (NNLO QCD +NLO EW
)

!
pp 

 ttH (NLO QCD)

!
pp 

associated production 
with  heavy quarks

Ht, b

g

g

H

q

q

W, Z

W, Z

H

g

g

Q

Q̄

Hq̄

q

W, Z

W, Z

GluonFusion

vector boson fusion 
(VBF)

associated production with 
vector bosons

50

Higgs predictions at 7 TeV

Wednesday 2 May 2012

Higgs predictions at LHC

11



Rikkert Frederix

NLO...?

Are all (IR-safe) observables that we can compute using a NLO code 
correctly described at NLO? Suppose we have a NLO code for pp ⟶ ttbar

Total cross section

Transverse momentum of the top quark

Transverse momentum of the top-antitop pair

Transverse momentum of the jet

Top-antitop invariant mass

Azimuthal distance between the top and anti-top
12

LO VirtReal
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Obstacles

Let us focus on NLO... there are already enough steps to be taken:

Virtual amplitudes: how to compute the loops automatically in a 
reasonable amount of time

How to deal with infra-red divergences: virtual corrections and real-
emission corrections are separately divergent and only their sum is 
finite (for IR-safe observables) according to the KLN theorem

How to match these processes to a parton shower without double 
counting

13
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NLO predictions

As an example, consider Drell-Yan production
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Branching

In the soft and collinear region, the branching of a gluon from a quark can 
be written as

where kt is the transverse momentum of the gluon, kt=E sinθ.

The singularities cancel against the singularities in the virtual corrections, 
which result from the integral over the loop momentum of the function

The sum is finite for observables that cannot distinguish between two 
collinear partons (kt ⟶ 0); a hard and a soft parton (z ⟶ 1); and a single 
parton (in the virtual contributions)
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3.2 Initial-state parton splitting, DGLAP evolution

3.2.1 Final and initial-state divergences

In Eq. (26a) we wrote the universal form for the final-state ‘splitting’ of a quark into a quark and a soft

gluon. Let’s rewrite it with different kinematic variables, considering a hard process h with cross section
σh, and examining the cross section for h with an extra gluon in the final state, σh+g. We have

p
zp

E =

θ

(1−z)p

σ
h σh+g ! σh

αsCF

π

dz

1− z

dk2t
k2t

, (41)

where E in Eq. (26a) corresponds to E = (1 − z)p and we’ve introduced kt = E sin θ ! Eθ. If we
avoid distinguishing a collinear q+ g pair from a plain quark (measurements with IRC safe observables)
then, as we argued before, the divergent part of the gluon emission contribution always cancels with a

related virtual correction

p p
σ
h σh+V ! −σh

αsCF

π

dz

1− z

dk2t
k2t

. (42)

Now let us examine what happens for initial-state splitting, where the hard process occurs after the

splitting and the momentum entering the hard process is modified p → zp:

zp
p

(1−z)p

σ
h σg+h(p) ! σh(zp)

αsCF

π

dz

1− z

dk2t
k2t

, (43)

where we have made explicit the hard process’s dependence on the incoming momentum, and we assume

that σh involves momentum transfers ∼ Q % kt, so that we can ignore the extra transverse momentum
entering σh. For virtual terms, the momentum entering the process is unchanged, so we have

p p
σ
h σg+h(p) ! −σh(p)

αsCF

π

dz

1− z

dk2t
k2t

, (44)

The total cross section then gets contributions with two different hard cross sections:

σg+h + σV+h !
αsCF

π

∫ Q2

0

dk2t
k2t

︸ ︷︷ ︸

infinite

∫ 1

0

dz

1− z
[σh(zp)− σh(p)]

︸ ︷︷ ︸

finite

. (45)

Note the limits on the integrals, in particular theQ2 upper limit on the transverse-momentum integration:

the approximations we’re using are valid as long as the transverse momentum emitted in the initial state is

much smaller than the momentum transfersQ that are present in the hard process. Of the two integrations
in Eq. (45), the one over z is finite, because in the region of the soft divergence, z → 1, the difference of
hard cross sections, [σh(zp) − σh(p)], tends to zero. In contrast, the kt integral diverges in the collinear
limit: the cross section with an incoming parton (and virtual corrections) appears not to be collinear safe.

This is a general feature of processes with incoming partons: so how are we then to carry out calculations

with initial-state hadrons?

In Section 2.3.1, when trying to make sense of final-state divergences, we introduced a (non-

perturbative) cutoff. Let’s do something similar here, with a cutoff, µF, called a factorization scale
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Infrared cancellation

The KLN theorem tells us that divergences from virtual and 
real-emission corrections cancel in the sum for observables 
insensitive to soft and collinear radiation (“IR-safe observables”)

When doing an analytic calculation in dimensional 
regularization this can be explicitly seen in the cancellation of 
the 1/є and 1/є2 terms (with є the regulator, є ➞ 0)

In the real emission corrections, the explicit poles enter after the 
phase-space integration (in d dimensions)
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Infrared safe observables

For an observable to be calculable in fixed-order perturbation 
theory, the observable should be infrared safe, i.e., it should be 
insensitive to the emission of soft or collinear partons.

In particular, if pi is a momentum occurring in the definition of an 
observable, it most be invariant under the branching
      pi ⟶ pj + pk,
whenever pj and pk are collinear or one of them is soft.

Examples

“The number of gluons” produced in a collision is not an 
infrared safe observable

“The number of hard jets defined using the kT algorithm with a 
transverse momentum above 40 GeV,” produced in a collision is 
an infrared safe observable

18
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phase-space integration

For complicated processes we have to result to numerical phase-space 
integration techniques (“Monte Carlo integration”), which can only be 
performed in an integer number of dimensions

Cannot use a finite value for the dimensional regulator and take the 
limit to zero in a numerical code

But we still have to cancel the divergences explicitly

Use a subtraction method to explicitly factor out the divergences from the 
phase-space integrals

19
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Example
Suppose we want to compute the integral (“real emission radiation”, 
where the 1-particle phase-space is referred to as the 1-dimensional x)

where                               and             is finite everywhere

Let’s introduce a regulator

for any non-integer non-zero value for     this integral is finite

We would like to factor out the explicit poles in     so that they can be 
canceled explicitly against the virtual corrections

20
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Subtraction method

Add and subtract the same term

We have factored out the 1/   divergence and are left with a finite integral

According to the KLN theorem the divergence cancels against the virtual 
corrections
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Limitations

Even though the divergence is factored, there are cancellations between 
large numbers: if for an observable    , if                                or we choose 
the bin-size too small, instabilities render the computation useless

We already knew that! KLN is sufficient; one must have infra-red 
safe observables and cannot ask for infinite resolution (need a finite 
bin-size)
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NLO with Subtraction

With the subtraction method this is replace by

Terms between the brackets are finite. Can integrate them numerically and 
independent from one another in 4 dimensions
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Subtraction methods

                    should be defined such that 

1) it exactly matches the singular behavior of 

2) its form is convenient for numerical integration techniques

3) it is exactly integrable in d dimensions over the one-particle 
subspace                          , leading to soft and/or collinear 
divergences as explicit poles in the dimensional regulator

4) it is universal, i.e. process independent
➞ overall factor times the Born process 
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Two methods

Catani-Seymour (CS) dipole 
subtraction

Most used method
Clear written paper on how to 
use this method in practice
Recoil taken by one (color-
connected) parton: N3 scaling
Method evolved from 
cancellation of the soft 
divergence
Proven to work for simple as well 
as complicated processes
Automation in publicly available 
packages: MadDipole, 
AutoDipole, Helac-Dipoles, 
Sherpa

Frixione-Kunszt-Signer (FKS) 
subtraction

Not so well-known
(Probably) more efficient, 
because less subtraction terms 
are needed
Recoil evenly distributed by all 
particles: N2 scaling
Collinear divergences as a 
starting point
Proven to work for simple as well 
as complicated processes
Automated in aMC@NLO & 
POWHEG BOX
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Kinematics of counter events

If i and j are two on-shell particles that are present in a splitting that leads 
to an singularity, for the counter events we need to combine their momenta 
to a new on-shell parton that’s the sum of i+j

This is not possible without changing any of the other momenta in the 
process

When applying cuts or making plots, events and counter events might end-
up in different bins

Use IR-safe observables and don’t ask for infinite resolution! (KLN 
theorem)

26

i

j
i+j

Real emission Subtraction term



Rikkert Frederix

Example in 4 charged lepton 
production

The NLO results shows a typical 
peak-dip structure that hampers 
fixed order calculations
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Figure 3: As in fig. 1, for the inclusive η of the opposite-charge, Z-id matched lepton pairs (left
panel), and the inclusive ∆φ distance of the opposite-charge, non-Z-id matched lepton pairs (right
panel).

is quite small over the whole range in pT , but tends to grow larger towards larger pT . This

effect has the same origin as that observed in the right panel of fig. 1, but it is much more

moderate than there. This is due to the fact that in the present case the whole range in pT

is associated with complete NLO corrections. The PDF uncertainty is seen to be similar to

or slightly smaller than that due to scale variation; parton densities are well determined in

the x range probed here. Finally, there is no difference between the two leptonic channels

for this observable; as already mentioned above, this conclusion is independent of whether

one applies the Z-id cuts. The pT of the lepton pairs shown in the right panel of fig. 2

follows the same pattern as the one we have just discussed, but the differences between

the various predictions are larger in this case. In particular, aMC@LO is closer to NLO

than to LO, which is a consequence of the more important role played by extra radiation in

this case (as one expects, the present one being a correlation between two particles rather

than a single-inclusive observable). Again, the closeness of NLO and aMC@NLO results

shows the desired perturbative behaviour. The more significant impact of extra radiation

on this variable is reflected in the slightly larger scale dependence at large pT ’s w.r.t. what

happens for the transverse momentum of the individual leptons discussed before. The two

leptonic channels agree well, also when removing the Z-id cuts.

Figure 3 shows two observables constructed after applying the Z-id cuts, namely the

pseudorapidity of lepton pairs with opposite charge which are also Z-id matched (left

panel; this is then the pseudorapidity of would-be Z bosons), and the azimuthal distance

between leptons of opposite charge which are not Z-id matched (right panel; thus, these

are leptons emerging from different would-be Z bosons). As in the case of fig. 2, there are

two entries in each histogram for any given event. These two observables are dominated

by small transverse momenta, and therefore it is not suprising that, at both O(α0
S) and

– 15 –

Figure 3: As in fig. 1, for the inclusive η of the opposite-charge, Z-id matched lepton pairs (left
panel), and the inclusive ∆φ distance of the opposite-charge, non-Z-id matched lepton pairs (right
panel).

is quite small over the whole range in pT , but tends to grow larger towards larger pT . This

effect has the same origin as that observed in the right panel of fig. 1, but it is much more

moderate than there. This is due to the fact that in the present case the whole range in pT

is associated with complete NLO corrections. The PDF uncertainty is seen to be similar to

or slightly smaller than that due to scale variation; parton densities are well determined in

the x range probed here. Finally, there is no difference between the two leptonic channels

for this observable; as already mentioned above, this conclusion is independent of whether

one applies the Z-id cuts. The pT of the lepton pairs shown in the right panel of fig. 2

follows the same pattern as the one we have just discussed, but the differences between

the various predictions are larger in this case. In particular, aMC@LO is closer to NLO

than to LO, which is a consequence of the more important role played by extra radiation in

this case (as one expects, the present one being a correlation between two particles rather

than a single-inclusive observable). Again, the closeness of NLO and aMC@NLO results

shows the desired perturbative behaviour. The more significant impact of extra radiation

on this variable is reflected in the slightly larger scale dependence at large pT ’s w.r.t. what

happens for the transverse momentum of the individual leptons discussed before. The two

leptonic channels agree well, also when removing the Z-id cuts.

Figure 3 shows two observables constructed after applying the Z-id cuts, namely the

pseudorapidity of lepton pairs with opposite charge which are also Z-id matched (left

panel; this is then the pseudorapidity of would-be Z bosons), and the azimuthal distance

between leptons of opposite charge which are not Z-id matched (right panel; thus, these

are leptons emerging from different would-be Z bosons). As in the case of fig. 2, there are

two entries in each histogram for any given event. These two observables are dominated

by small transverse momenta, and therefore it is not suprising that, at both O(α0
S) and

– 15 –



Rikkert Frederix

Event unweighting?

Another consequence of this kinematic 
mismatch is that we cannot generate events 
at fixed order NLO

Even though the integrals are finite, they 
are not bounded (compare with
                   ), so there is no maximum to 
unweight against: a single event can 
have an arbitrarily large weight!

Furthermore, event and counter event 
have different kinematics: which one to 
use for the unweighted event?
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Figure 2: Matrix element squared |MR|2 (upper plots, solid line) and the subtraction term D
(upper plots, dashed/dotted/dot-dashed lines) for (a) the process e−(p1)q(p2) → e−(p3)q(p4)g(p5)
as a function of s25/s12 = (p2.p5)/(p1.p2) and (b) the process e+(p1)e−(p2) → Z → t(p3)t̄(p4)g(p5)
as a function of xg = 1 − (p3.p4)/(p1.p2). Also plotted are the ratio D/|MR|2, the difference
|MR|2−D (averaged over 100 random points per bin) and the maximal difference max(||MR|2−D|)
per bin. The dashed lines include the dipoles for each point in phase space, α = 1, while for the
dotted α = 0.1 and dot-dashed α = 0.01 the phase space for the dipoles has been restricted to the
collinear/soft regions.

sions drawn there apply to this plot as well.

As a further check we have tested the code extensively against MCFM [10,11]. We have

generated random points in phase space and compared the subtraction terms calculated

by MCFM with the subtraction terms calculated by our code. See table 1 for a list of

processes that have been checked. We observed differences only in the case where dipoles

were introduced entirely to cancel collinear limits, which can be made independently of the

spectator particle. In our code all possible dipoles are calculated, which implies a sum over

all spectator particles. However, if there is only a collinear divergence, i.e., the unresolved

parton cannot go soft, this sum is redundant and one dipole with the appropriate coefficient

is enough to cancel the singularity. In MCFM, these special limits are implemented using

a single spectator momentum, while MadDipole sums over all spectator momenta, thereby

yielding a different subtraction term. We have checked in the relevant cases that close to

the singularities the MCFM subtraction terms behave identical to the subtraction terms

calculated by our code.

We also tested the CPU time which is needed to produce the squared matrix element and

the dipoles for a given phase space point. These checks were performed with an Intel

Pentium 4 processor with 3.20Ghz. As an example we picked out three different processes:

1) gg → gggg: |M|2: 26ms,
∑

dipoles: 68ms

2) uū → dd̄ggg: |M|2: 10ms,
∑

dipoles: 45ms

3) uū → uūggg: |M|2: 34ms,
∑

dipoles: 0.15s

– 8 –
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Filling histograms on-the-
fly

In practice, when we do the MC integration we generate 2 sets of 
momenta

1. An m-body set (for the Born, virtual and integrated counter terms)

2. An m+1-body (for the NLO) which we map to the counter term 
momenta (for the counter terms)

We compute the above formula; and apply cuts and fill histograms using 
the momenta corresponding to each term with the weight of that 
corresponding term
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Summary

Both the virtual and real-emission corrections are IR divergent, but 
their sum is finite: We can use a subtraction methods to factor the 
divergences in the real-emission phase-space integration and cancel 
them explicitly against the terms in the virtual corrections

This generates events and counter events with slightly different 
kinematics. This means we cannot generate unweighed events 
(integrals are not bounded), but we can fill plots with weighted 
events: MC integrator (not an MC event generator)

When making plots or applying cuts, use only IR safe observables 
with finite resolution

Phase-space integrals are finite, but not bounded: cannot unweight 
the events
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