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MASTER EQUATION FOR HADRON
COLLIDERS

o — Eb: / dydzy fo(21s 1im) oo, for) dBapx (5s 1 1)

Parton density Parton-level
functions (differential)

Cross section

% Parton-level cross section from matrix elements: model
and process dependent

# Parton density (or distribution) functions: process
independent

¢ Differences between colliders given by parton
luminosities
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PERTURBATIVE EXPANSION

dGap—x (S, uF, hr) Parton-level cross section
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PERTURBATIVE EXPANSION

d(Afab_>X (§, UE, ,uR) Parton-level cross section

¢ The parton-level cross section can be computed as a series 1n
perturbation theory, using the coupling constant as an expansion
parameter, schematically:

G = oo 1 &Sa<1>+(&8) <2)+( ) o 4.
2T 2T
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PERTURBATIVE EXPANSION

d@'ab_gg (§, UE, ,uR) Parton-level cross section

/A

¢ The parton-level cross section can be computed as a series in
perturbation theory, using the coupling constant as an expansion
parameter, schematically:

~ _ _Born , () ( > (2) ( ) (3)
14
o= ( 27T T 2T T 27T T
A A

4 ) 4 )
LO NLO
predictions corrections
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PERTURBATIVE EXPANSION

d@'ab_gg (§, UE, ,uR) Parton-level cross section

/A

¢ The parton-level cross section can be computed as a series in
perturbation theory, using the coupling constant as an expansion
parameter, schematically:

~ _ _Born , () ( > (2) ( ) (3)
14 .
o= ( 27T T 2T T 27T T

A

Al

A

theoretical uncertainties
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LO NLO NNLO NNNLO
predictions \corrections corrections \corrections

% Including higher corrections improves predictions and reduces



IMPROVED PREDICTIONS

do = E;/dmd@ folx1, ur)fo(xo, ir) doar—x (8, pr, LR)

A Born | (1) ( ) (2) ( ) (3)
1
o= ( 27T * 2T * 2T T >

Al

¢ Remember, predictions are inclusive: also at LO initial state radiation
1s included via the PDF; final state radiation by the definition of the
parton, which represents all final state evolutions

¢ Can be made explicit by using a parton shower (which 1s unitary)

Al

¢ Due to these approximations, Leading Order predictions can depend
strongly on the renormalization and factorization scales

Al
ns

% Including higher order corrections reduces the dependence on these
scales
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A

reduced

N

in the running coupling and the

PDF's 1s compensated for via the loop

% First order where scale dependence

corrections: first reliable estimate

of the total cross section

¢ Better description of final state:

impact of extra radiation included

(e.g. jets can have substructure)

Al

partonic channels

Rikkert Frederix

% Opening of additional initial state

% At NLO the dependence on the renormalization and factorization scales 1s

o |
Top produstisn va g, V3=14Ta¥

LD, ctegBll, (M )=0.130

LA, ctegf_m, oM )=0.1156




NLO CORRECTIONS

Al

% NLO corrections have three parts:

A

¢ The Born contribution, 1.e. the Leading order.

S

s Virtual (or Loop) corrections: formed by an amplitude with a
closed loop of particles interfered with the Born amplitudes

¢ Real emission corrections: formed by amplitudes with one
extra parton compared to the Born process

Al

% Both Virtual and Real emission have one power of a5 extra
compared to the Born process

o LO doP + doV —+ dott

™m m m-+1
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NLO PREDICTIONS

¢ As an example, consider Drell-Yan Z/y* production

A
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NLO PREDICTIONS

¢ As an example, consider Drell-Yan Z/y* production

6:03‘“’“(1 | &80(1)4—...)

e

4 )

2

2 Re
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% NNLO 1s the current state-of-the-art. There are only a few complete results

available, but this year great progress has been made and NNLO results for
ttbar, H+1j, dijet appeared

% Why do we need 1t?

\\/
7\

Al
Z\\

\\/
7\

Al
Z\\y

A
Ny

An NNLO calculation gives control

of the uncertainties 1n a calculation

It 1s “mandatory” it NLO corrections are

very large to check the behavior of the

perturbative series

[t 1s the best we have! It 1s needed for
Standard Candles and very precise tests

d?c/dM/dY [pb/GeV]
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/M

of perturbation theory, exploiting all the available information, e.g. for

determining NNLO PDF sets
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HIGGS PREDICTIONS AT NNLO
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HIGGS PREDICTIONS AT LHC

9
t,b 4 >----- H
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associated production with
vector bosons
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associated production
with heavy quarks
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NLO...”?

Al

% Are all (IR-safe) observables that we can compute using a NLO code
correctly described at NLO? Suppose we have a NLO code for pp — ttbar

9 TTOOOO— ‘ 9 BTV — ‘ 7 70050500

E Virt
w%z: ‘ I TBouTO—

1O [ Real

9 ~ov0000 — ' g

¢ Total cross section
¢ Transverse momentum of the top quark

. T ] ° °
% Transverse momentum of the top-antitop pair

R ) :
 Transverse momentum of the jet

- : : :
lop-antitop iInvariant mass

¢ Azimuthal distance between the top and anti-top
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% Are all (IR-safe) observables that we can compute using a NLO code
correctly described at NLO? Suppose we have a NLO code for pp — ttbar

9 TTOOOO— ‘ 9 BTV — ‘ 7 70050500

E Virt
w%z: ‘ I BBouTO—

¢ Total cross section v

LO | Real

I oo0000 — ' g

A
7

[ransverse momentum of the top quark v

Ve ]

; ﬂ : :
% Transverse momentum of the top-antitop pair

Al
Z\\y

R ) :
 Transverse momentum of the jet

" e L .
- lop-antitop mnvariant mass
¢ Azimuthal distance between the top and anti-top
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NLO...?
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% Are all (IR-safe) observables that we can compute using a NLO code
correctly described at NLO? Suppose we have a NLO code for pp — ttbar
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w ™ : : : X
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% Are all (IR-safe) observables that we can compute using a NLO code
correctly described at NLO? Suppose we have a NLO code for pp — ttbar

I BOOOOO—— ! 9 TTEOEOO——— ¢ 9 BTOOOOO——— !

LO [ Real E Virt

wa‘%j t I BBouTO

¢ Total cross section

% Transverse momentum of the top quark

¢ Transverse momentum of the top-antitop pair X
RS B ] : x
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NLO...?
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% Are all (IR-safe) observables that we can compute using a NLO code
correctly described at NLO? Suppose we have a NLO code for pp — ttbar

I TTOOO0 — ‘ I TTOTOO — f 9 DOOOO0— t

O [ Real E Virt

wa‘%j t 7 TBouTO

¢ Total cross section

% Transverse momentum of the top quark

e ) :
 Transverse momentum of the jet

w T . . .
Aop-antltop Invariant mass

v
v
# Transverse momentum of the top-antitop pair X
X
v
X

¢ Azimuthal distance between the top and anti-top
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>.VW =>«/vvv + @rvvvv Z:m +O(oc52)
+ anything

\/

% Let us focus on NLO... there are already enough steps to be taken:

NA
Z\J

Virtual amplitudes: how to compute the loops automatically in a
reasonable amount of time

R
K

* How to deal with infra-red divergences: virtual corrections and real-
emission corrections are separately divergent and only their sum 1s

finite (for IR-safe observables) according to the KLLN theorem

Al
N}

How to match these processes to a parton shower without double
counting

Rikkert Frederix =
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NLO PREDICTIONS

¢ As an example, consider Drell-Yan production

a_:O_Born<1 |
4 /\ )
S 2
1\ J

Rikkert Frederix

8}
s (1)
27’(‘0 —I—)
9 N
g + .
— .
2 Re @*\/\N\/ X>V\/W
gs
- — Y,

16
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A

% In the soft and collinear region, the branching of a gluon from a quark can
be written as

- ) il g g aSCF de dk?
= h4+g = Oh
- S0 +g 76 ]. — 2 k?

where £, 1s the transverse momentum of the gluon, &= sin®.

Al

% The singularities cancel against the singularities in the virtual corrections,
which result from the integral over the loop momentum of the function

N /
\ /
) p p N asCr dz dk?
Oh = = Oh+V = —0Op 2
|

% The sum 1s finite for observables that cannot distinguish between two

collinear partons (k; — 0); a hard and a soft parton (z — 1); and a single

parton (in the virtual contributions)
16



INFRARED CANCELLATION

oV O / d*®,, B(P / d*® / dlV (® / d®,, 1 R(®,, 1)
loop

% The KLLN theorem tells us that divergences from virtual and
real-emission corrections cancel in the sum for observables
insensitive to soft and collinear radiation (“IR-safe observables”)

% When doing an analytic calculation in dimensional
regularization this can be explicitly seen 1n the cancellation of
the 1/e and 1/¢? terms (with e the regulator, e = 0)

¢ In the real emission corrections, the ex licit oles enter after the
P P
phase-space integration (in d dimensions)

Rikkert Frederix 17



INFRARED SAFE OBSERVABLES

KA

¢ For an observable to be calculable 1n fixed-order perturbation
theory, the observable should be infrared safe, 1.e., it should be
insensitive to the emission of soft or collinear partons.

A

% In particular, if p; 1s a momentum occurring in the definition of an
observable, it most be invariant under the branching

pi — pj + Phs

whenever p; and p¢ are collinear or one of them 1s soft.

e Examples

Al
wN

“The number of gluons” produced in a collision 1s not an
infrared safe observable

Al
W

“The number of hard jets defined using the £7 algorithm with a
transverse momentum above 40 GeV,” produced 1n a collision 1s

an infrared safe observable

Rikkert Frederix



PHASE-SPACE INTEGRATION

o0 / d*®,, B(P / d*® / A1V (®,,) + / d°®,, 1 R(®pyp1)
loop

Al

% For complicated processes we have to result to numerical phase-space
Integration techniques (“Monte Carlo integration’), which can only be
performed in an integer number of dimensions

% Cannot use a finite value for the dimensional regulator and take the

limit to zero in a numerical code

Al

¢ But we still have to cancel the divergences explicitly
% Use a subtraction method to explicitly factor out the divergences from the

phase -space integrals

Rikkert Frederix 19
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NA

* Suppose we want to compute the integral (“real emission radiation”,
where the 1-particle phase-space 1s referred to as the 1-dimensional )

/O iz f(2) ..

where f (Qj) — @ and g(,’,l?) is finite everywhere
L

2

¢ Let’s introduce a regulator

1 1
. glx) . iy
i | do 55 = iy [ o /0

for any non-integer non-zero value for € this integral is finite

A\

% We would like to factor out the explicit poles in € so that they can be

canceled explicitly against the virtual corrections

Rikkert Frederix e



SUBTRACTION METHOD

lim [ dex™ € f(x) f(z) = 9(z)

e—0 0 X

% Add and subtract the same term

lim da: ZE_Ef( ) — T 1da: € _9(0) | f(:z:) 9(0)_

e—0 0 e—0 0 | X xr
L B _
e z=¢ | g(z) —g(0)
— 21_{1’(1) OdCIZ‘ _g(O) . | le+€
—1 ! — ¢(0
= lim —g¢(0) + /dm 9(z) ~ 9(0)
e—0 € 0 £z

% We have factored out the 1/€ divergence and are left with a finite integral

% According to the KLLIN theorem the divergence cancels against the virtual
corrections

Rikkert Frederix 2L



( “Plus distribution” J
1 I =N
Subtraction: /dm g(x) 9(0) «
0

A

¢ Even though the divergence 1s factored, there are cancellations between
large numbers: if for an observable (), if liﬂ% O(x) # O(0)or we choose
€T —

the bin-size too small, instabilities render the computation useless

A

% We already knew that! KLLN 1s suftficient; one must have infra-red
safe observables and cannot ask for infinite resolution (need a finite
bin-size)

Rikkert Frederix
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NLO WITH SUBTRACTION

SNLO /d4<I> B(® /d4 / A1V (® /ddq)m+1 R(Ppy1)
loop

¢ With the subtraction method this 1s replace by

o O~ / d*®,, B(®,)

+/d4<I>m /ldle(CI)m)Jr/ddCI)lG@mH)
_ J loop de—0

b [ @i [R@i1) = G@)

¢ Terms between the brackets are finite. Can integrate them numerically and
independent from one another in 4 dimensions

Rikkert Frederix 23



SUBTRACTION METHODS

#* (5 ((I)m+1) should be defined such that
1) it exactly matches the singular behavior of R((I)m—l—l)

2) its form 1s convenient for numerical integration techniques

3) it 1s exactly integrable in d dimensions over the one-particle
subspace / d°® G (P,, 1), leading to soft and/or collinear

divergences as explicit poles in the dimensional regulator

4) 1t 1s universal, 1.e. process independent
— overall factor times the Born process

Rikkert Frederix
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Catani-Seymour (CS) dipole

subtraction
M Most used method

M Clear written paper on how to
use this method 1n practice

™ Recoil taken by one (color-

connected) parton: N? scaling

M Method evolved from

cancellation of the soft
divergence

™ Proven to work for simple as well
as complicated processes

M Automation in publicly available
packages: MadDipole,
AutoDipole, Helac-Dipoles,
Sherpa

Rikkert Frederix

Frixione-Kunszt-Signer (FKS)

subtraction

M Not so well-known
M (Probably) more efficient,

because less subtraction terms
are needed

M Recoil evenly distributed by all
particles: N? scaling

M Collinear divergences as a
starting point

™ Proven to work for simple as well
as complicated processes

™M Automated in aMC@NLO &
POWHEG BOX

25



KINEMATICS OF COUNTER EVENTS

; > L+
;

Real emission Subtraction term

(2

% If { and j are two on-shell particles that are present in a splitting that leads
to an singularity, for the counter events we need to combine their momenta
to a new on-shell parton that’s the sum of ¢+/

% This 1s not possible without changing any of the other momenta in the
process

KA

* When applying cuts or making plots, events and counter events might end-
up in different bins

¢ Use IR-safe observables and don't ask for infinite resolution! (KLN

theorem)
Rikkert Frederix e



EXAMPLE IN 4 CHARGED LEPTON
PRODUCTION

L i L
1.00 | ol/bin [fb] at|LHC 7 TeV

0.50 |

0.10 |
0.05 |

0.01

1.1F

Lo b— ] % The NLO results shows a typical
0.9) _ —— pdfunc. . . . peak-dip structure that hampers

fixed order calculations
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EVENT UNWEIGHTING?

Al

% Another consequence of this kinematic

mismatch 1s that we cannot generate events

102 O ete™ > Z > ttg ]
at ﬁxed order NLO 100 — soft limit for g |
: : 2 |
¢ Even though the integrals are finite, they " [ e _
n matrix element [My|® (in GeV™®) ——
- 10 B =1 ---- ]
are not bounded (compare with ;[ subtr. term D (in GeV?) 2=0.1 - |
107° — 2, =0.01------ .
]. o L4 II| [ [ IIIIII| [ Iﬁllllll [ [ IIIII;Il [ I"IIIIII
f daj—l ), so there 1s no maximum to LR ES| T T T A
0 \/E 1L1E= —3
. . . 1.0 —
unwelght agalnSt: a Slngle event Can 0.9 E_Il | | L1 11 II| | | L1 11 II| | | L1 1 III| | | L1l III—§
. . . 0‘0004 I| ) ) ) IIIII| ) ) ) IIIII| ) ) IIIIII| ) ) LI
have an arbitrarily large weight! 0.0002
0.0000
\\/ lo—g
% Furthermore, event and counter event -4 i -
. . . . 10~9 ax. diff. ||[M_|?-D| (in GeV~2 T T T
have different kinematics: which one to  10-6 [ % @ Ma-fltmeevm 7 mreeg e
. 10~4 103 10~% 10~1 100
use for the unwelghted event? x,
do do
do 4 OB |
u 0
] o
=0 (= not possible MO
] D DEI at NLO I
j==1 e CoOE0o
O O 28
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FILLING HISTOGRAMS ON-THE-
FLY

o0 / d*®,,, B(®,,)

+/d4q)m[/1 AUV (D) +/dd¢1G($m+1)]

oop e—0

b [ @i | R Opi) = GEit)

# In practice, when we do the MC integration we generate 2 sets of
momenta

1. An m-body set (for the Born, virtual and integrated counter terms)

2. An m+1-body (for the NLO) which we map to the counter term

momenta (for the counter terms)

% We compute the above formula; and apply cuts and fll histograms using

the momenta corresponding to each term with the weight of that
corresponding term

Rikkert Frederix e



> UMMARY

¢ Both the virtual and real-emission corrections are IR divergent, but
their sum 1s finite: We can use a subtraction methods to factor the
divergences 1n the real-emission phase-space integration and cancel
them explicitly against the terms 1n the virtual corrections

# This generates events and counter events with slightly different
kinematics. This means we cannot generate unweighed events

(integrals are not bounded), but we can fill plots with weighted
events: MC integrator (not an MC event generator)

% When making plots or applying cuts, use only IR safe observables

with finite resolution

¢ Phase-space integrals are finite, but not bounded: cannot unweight
the events

Rikkert Frederix
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