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Overview

Outline
● Lecture 1: Crash course in (Bayesian) statistics and

Markov Chain Monte Carlo
● Lecture 2: Limits, sensitivities and all that
● Summary and outlook
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Statistics

Outline: Statistics
● A concrete example
● Scientific reasoning
● Probability and the Bayesian interpretation
● Parameter estimation
● Markov Chain Monte Carlo
● Summary
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Computational steps

Numerical issues
● Point estimate:

● Maximization of posterior
● Typical tool: Minuit
● Also: Simulated annealing

● Calculation of marginal distributions:
● Analytical solutions usually difficult
● Numerical integration methods, e.g. VEGAS
● Sampling methods:

● Hit&miss, simple Monte Carlo, ...
● Importance sampling
● Markov Chain Monte Carlo (MCMC)

→ Revolution in Bayesian computation
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Markov Chain Monte Carlo

How does MCMC work?
● Output of Bayesian analyses are 
posterior probability densities, i.e., 
functions of an arbitrary number of 
parameters (dimensions).

● Sampling large dimensional 
functions is difficult.

● Idea: use random walk heading 
towards region of  larger values 
(probabilities)

→ Metropolis algorithm
N. Metropolis et al., 
J. Chem. Phys. 21 (1953) 1087.

 Start at some randomly chosen x
i

 Randomly generate y around x
i

 If f(y) > f(x
i
) set x

i+1
 = y

 If f(y) < f(x
i
) set x

i+1
 = y with prob. p=f(y)/f(x

i
)

 If y is not accepted set x
i+1

 = x
i

 Start over
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Markov Chain Monte Carlo

MCMC for Bayesian inference
● Use MCMC to sample the 
posterior probability, i.e.

● Marginalization of posterior:

● Fill a histogram with just one
coordinate while sampling

● Error propagation: calculate any 
function of the parameters while
sampling

● Point estimate: find mode while
sampling
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Markov Chain Monte Carlo

Does it work?
● Test MCMC on a function:

● Compare MCMC distribution to
analytic function

● Several minima/maxima are no
problem. 

● Different orders of magnitude are
no problem.

● But: need to make sure that these 
chains converge towards the true 
distribution

f  x=x4 sin2x
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Markov Chain Monte Carlo

Convergence
● This is where it get’s difficult...
● Add a burn-in phase
● Use multiple chains

Parameter 0 value vs. iteration Parameter 1 vs parameter 0

Convergence a la Gelman & Rubin

Burn-in phase
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Markov Chain Monte Carlo

Bayesian Analysis Toolkit
● Tool for Bayesian inference written in C++
● Based on the ROOT-core functionality, interface to RooStats
● Uses MCMC for the calculation of the posterior probability
● Full control over convergence, automatic adjustment of step size
● Further algorithms: interface to CUBA, Minuit; importance sampling,
simulated annealing, ...

● Pre-defined models: histogram fitter, template fitter, tool for combination of
measurements, ...

● Web page: http://www.mppmu.mpg.de/bat/
●  Contact: bat@mppmu.mpg.de
●  Paper on BAT: 

A. Caldwell, D. Kollar, K. Kröninger, BAT - The Bayesian
Analysis Toolkit
Comp. Phys. Comm. 180 (2009) 2197-2209 [arXiv:0808.2552]. 

http://www.mppmu.mpg.de/bat/
mailto:bat@mppmu.mpg.de
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Limits, sensitivities and all that

Outline: Limits, ...
● Expected sensitivities
● Observed limits
● Goodness-of-fit and p-values
● Summary
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Expected sensitivities

Expected sensitivities
● Plan to conduct an experiment:

● How do you get funding?
● Explain the physics case and estimate the expected sensitivity to a 
process searched for

● What does `sensitivity' mean anyway? 
● Example: ILC TDR
● Three step procedure:

● Statistical formulation: define a procedure to estimate a limit (searches) 
or an uncertainty (measurements)

● Ensemble generation: generate pseudodata according to your 
expectation (luminosity, run-time, POT, ...). Use same settings as real 
data will have, but multiple statistics

● Ensemble tests: Repeat analysis on pseudodata and quote expectation 
values.
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Expected sensitivities
● Consider same example as yesterday:

● Neutrinoless double β-decay: sharp Gaussian on top of a flat 
background

● Expect few numbers of events
● Now: estimate the sensitivity of the GERDA experiment:
A. Caldwell, KK, Phys. Rev. D 74 (2006) 092003

● Two questions:
● What is the probability that the observed
spectrum is due to background only?

● What is the signal contribution? Measurement
or limit.

● Same idea as with search/measurement of the
top quark, Higgs boson, etc. 

Expected sensitivities
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Expected sensitivities

Statistical formulation
● Hypotheses:

●  : the spectrum is due to background only
●  : the spectrum has contributions from signal and background
● Assume both to be equally likely

● Evidence and discovery:
● Test hypothesis H using Bayes theorem:

● If p(H|data) < cut, claim evidence or discovery
● These are just words, but choose them and their meaning carefully, 
e.g., cut = 0.01: evidence, cut = 0.0001: discovery

pH∣data=
pdata∣H ⋅p0 H 

pdata∣H ⋅p0 H p data∣H ⋅p0 H 

H

H
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Expected sensitivities

Statistical formulation
● Statistical models:

● Binned likelihood of independent Poisson fluctuations
● One or two contributions with strengths B and S

● Assume uniform prior for S (no clue what the strength is)
● Assume Gaussian prior for B (estimated in a sideband region)

p data∣H =∫dB pdata∣H ,B⋅p0 B

p data∣H =∫dB∫dS pdata∣H ,B ,S ⋅p0 B⋅p0 S 
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Expected sensitivities

Statistical formulation
● Setting limits: calculate marginal distribution for signal

● Integrate until a certain probability is reached

p S∣data ,H =∫dB
p data∣H , B , S ⋅p0B⋅P0S 

∫dB∫dS pdata∣H ,B ,S ⋅p0 B⋅P0 S 

∫0

S 90

dS pS∣data , H =0.90
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Expected sensitivities

Ensemble generation
● Generate sets of spectra from Monte Carlo events
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Expected sensitivities

Ensemble tests
● Testing the background-only
hypothesis:
● Composition of samples: 
signal and background

● Calculate probability p(H|data)
for each spectrum

● Calculate mode of signal
contribution for each spectrum

● Example:
● Input S = 20.4, B = 10
● Average mode <S*>=20.3
● More than 97% of ensembles
have p(H|data)<0.0001, i.e.
no claim of discovery in 3% of
all cases

discovery
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Expected sensitivities

Ensemble tests
● Setting limits (on small signals):

● Composition of samples: 
only background

● Calculate probability p(H|data)
for each spectrum

● Calculate 90% prob. limit on
signal for each spectrum

● Example:
● Input S = 0, B = 10

● Average limit <S
90

>=3.1

● No claim of discovery for
any pseudodata set
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Expected sensitivities

Ensemble tests
● Physics interpretation:

● Observed signal strength can be transformed into halflife of 0νββ:

● And into effective Majorana neutrino mass:

S≈ln 2
N A

M A

⋅
M⋅t
T 1/2

〈m

〉=T 1/2⋅G0

−1/2
⋅

1
M 0

exposure

nuclear matrix element
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Expected sensitivities

Sensitivity
● For a given exposure, define sensitivities as

● expected 90% prob. lower limit on halflife of 0νββ, or
expected 90% prob. upper limit on neutrino mass;

● half-life (or neutrino mass) for which 50% of all pseudodata sets
claim a discovery
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Observed limits

Bringing expectation and observation together
● Now add real data and set actual limits:
Search for Z' boson, ATLAS-CONF-2013-017

● Repeat analysis on real data, treat
pseudodata and data the same

● Note:
● Expected upper limit calculation uses
ensembles without signal contribution, but

● fit a Z' hypothesis (template) with a certain
Z' mass to the spectrum (plus background)

● Histogram the obtained limits and quote the
median value as well as the central 68%
and 95% envelope

● Exclude a Z' mass if limit is smaller than
predicted cross-section (for a concrete
model)
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Goodness-of-fit and p-values

Goodness-of-fit
● Situation:

● Measurement is done
● Chose one model over the other
● Fitted all parameters

● To be done: judge if the data are described by the chosen model
● How to judge the goodness-of-fit? One way: use p-values
● Again, a three-step procedure:

● Define a discrepancy variable (test statistic) t such that large values
suggest a discrepancy between data and model.

● Generate ensembles and calculate the test statistic for each ensemble

● Compare the distribution of t, p(t), with the observed value of t, t
obs

 by

calculating the tail-area probability to have found a larger value of t
obs

.
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Goodness-of-fit and p-values

p-values
● Tail-area probability:

● Small p-values: disagreement
between data and model

● Repeated calculation of p-value
results in a uniform distribution

● Pick a confidence level α and reject
the model if 

● For large α, this means a lot of
ensembles (thus Monte Carlo events)

p tt obs∣model =∫dt p t∣model area = p-value

p ttobs∣model 1− 1 – α = 0.05
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χ2 variables
● Examples:

● Gaussian χ2:

● Assume data are Gaussian
distributed around expectation

● Ask for χ2/dof ~ 1 because
<χ2> = dof

● Spread also important, thus
quote χ2-probability

● Neyman χ2: Pearson χ2:

Goodness-of-fit and p-values


2
=∑i

 yi− f  x i 
2

 i
2

N
2
=∑i

ni−i 
2

ni
N

2
=∑i

ni−i 
2

i
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An example

Goodness-of-fit and p-values

F. Beaujean et al.,
Phys. Rev. D 83
(2011) 012004
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An example

Goodness-of-fit and p-values
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An example

Goodness-of-fit and p-values

Lesson learned:
● Use ensemble tests 
rather than approximate 
formulae
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Limits, sensitivities and all that

Outline
● Lecture 1: Crash course in (Bayesian) statistics and

Markov Chain Monte Carlo
● Lecture 2: Limits, sensitivities and all that
● Summary and outlook
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Summary (Limits, ...)

Summary (Limits)
● Direct model comparison (useful for comparing different MC generators)
● Ensemble tests are a powerful tool for calculating

● expected sensitivities (limits, observations, uncertainties, etc.),
● properties of estimators and discrepancy variables,
● measures of goodness-of-fit

● Often: prefer numerical solution over a bad approximation (p-values)

Summary
● Monte Carlo methods are crucial part in experimental HEP
● Context is often statistical inference

● Parameter estimation, fitting large-dimensional problems
● Ensemble tests and expected sensitivities
● Goodness-of-fit tests and p-values
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