

Kevin Kröninger – University of Göttingen

MCNet School, Maria Spring, August 6th 2013

Overview • Statistics • Limits, sensitivities and all that • Outlook

Outline

- Lecture 1: Crash course in (Bayesian) statistics and Markov Chain Monte Carlo
- Lecture 2: Limits, sensitivities and all that
- Summary and outlook

Outline: Statistics

- A concrete example
- Scientific reasoning
- Probability and the Bayesian interpretation
- Parameter estimation
- Markov Chain Monte Carlo
- Summary

Numerical issues

- Point estimate:
 - Maximization of posterior
 - Typical tool: Minuit
 - Also: Simulated annealing
- Calculation of marginal distributions:
 - Analytical solutions usually difficult
 - Numerical integration methods, e.g. VEGAS
 - Sampling methods:
 - Hit&miss, simple Monte Carlo, ...
 - Importance sampling
 - Markov Chain Monte Carlo (MCMC)
 - \rightarrow Revolution in Bayesian computation

Markov Chain Monte Carlo

How does MCMC work?

 Output of Bayesian analyses are posterior probability densities, i.e., functions of an arbitrary number of parameters (dimensions).

MCNet School, Maria Spring, 06.08.2013

- Sampling large dimensional functions is difficult.
- Idea: use random walk heading towards region of larger values (probabilities)

→ Metropolis algorithm

N. Metropolis *et al.*, J. Chem. Phys. 21 (1953) 1087.

Start at some randomly chosen x_i Randomly generate y around x_i If $f(y) > f(x_i)$ set $x_{i+1} = y$ If $f(y) < f(x_i)$ set $x_{i+1} = y$ with prob. $p=f(y)/f(x_i)$ If y is not accepted set $x_{i+1} = x_i$ Start over

Markov Chain Monte Carlo

MCMC for Bayesian inference

• Use MCMC to sample the posterior probability, i.e.

 $\boldsymbol{f}(\vec{\lambda}) = \boldsymbol{p}(\vec{D} \mid \vec{\lambda}) \, \boldsymbol{p}_0(\vec{\lambda})$

Marginalization of posterior:

 $\boldsymbol{p}(\lambda_i \,|\, \vec{\boldsymbol{D}}) = \int \boldsymbol{p}(\vec{\boldsymbol{D}} \,|\, \vec{\lambda}) \, \boldsymbol{p}_0(\vec{\lambda}) \boldsymbol{d} \, \vec{\lambda}_{j \neq i}$

- Fill a histogram with just one coordinate while sampling
- Error propagation: calculate any function of the parameters while sampling
- Point estimate: find mode while sampling

Does it work?

• Test MCMC on a function:

 $f(x) = x^4 \sin^2(x)$

- Compare MCMC distribution to analytic function
- Several minima/maxima are no problem.
- Different orders of magnitude are no problem.
- But: need to make sure that these chains converge towards the true distribution

Convergence a la Gelman & Rubin

Monte Carlo methods in experimenta

Convergence

- This is where it get's difficult...
- Add a burn-in phase
- Use multiple chains

Bayesian Analysis Toolkit

- Tool for Bayesian inference written in C++
- Based on the ROOT-core functionality, interface to RooStats
- Uses MCMC for the calculation of the posterior probability
- Full control over convergence, automatic adjustment of step size
- Further algorithms: interface to CUBA, Minuit; importance sampling, simulated annealing, ...
- Pre-defined models: histogram fitter, template fitter, tool for combination of measurements, ...
- Web page: http://www.mppmu.mpg.de/bat/
- Contact: bat@mppmu.mpg.de
- Paper on BAT:

A. Caldwell, D. Kollar, K. Kröninger, BAT - The Bayesian Analysis Toolkit Comp. Phys. Comm. 180 (2009) 2197-2209 [arXiv:0808.2552].

Limits, sensitivities and all that

MCNet School, Maria Spring, 06.08.2013

Monte Carlo methods in experimenta

Outline: Limits, ...

- Expected sensitivities
- Observed limits
- Goodness-of-fit and *p*-values
- Summary

Expected sensitivities

- Plan to conduct an experiment:
 - How do you get funding?
 - Explain the physics case and estimate the expected sensitivity to a process searched for
 - What does `sensitivity' mean anyway?
- Example: ILC TDR
- Three step procedure:
 - Statistical formulation: define a procedure to estimate a limit (searches) or an uncertainty (measurements)
 - Ensemble generation: generate pseudodata according to your expectation (luminosity, run-time, POT, ...). Use same settings as real data will have, but multiple statistics
 - Ensemble tests: Repeat analysis on pseudodata and quote expectation values.

Expected sensitivities

- Consider same example as yesterday:
 - \bullet Neutrinoless double β -decay: sharp Gaussian on top of a flat background
 - Expect few numbers of events
 - Now: estimate the sensitivity of the GERDA experiment: A. Caldwell, KK, Phys. Rev. D 74 (2006) 092003
- Two questions:
 - What is the probability that the observed spectrum is due to background only?
 - What is the signal contribution? Measurement or limit.
- Same idea as with search/measurement of the top quark, Higgs boson, etc.

Statistical formulation

- Hypotheses:
 - *H* : the spectrum is due to background only
 - \overline{H} : the spectrum has contributions from signal and background
 - Assume both to be equally likely
- Evidence and discovery:
 - Test hypothesis *H* using Bayes theorem:

$$p(H|data) = \frac{p(data|H) \cdot p_0(H)}{p(data|H) \cdot p_0(H) + p(data|\overline{H}) \cdot p_0(\overline{H})}$$

- If p(H|data) < cut, claim *evidence* or *discovery*
- These are just words, but choose them and their meaning carefully, e.g., cut = 0.01: evidence, cut = 0.0001: discovery

Statistical formulation

- Statistical models:
 - Binned likelihood of independent Poisson fluctuations
 - One or two contributions with strengths B and S

 $p(data|H) = \int dB \, p(data|H, B) \cdot p_0(B)$ $p(data|\overline{H}) = \int dB \int dS \, p(data|H, B, S) \cdot p_0(B) \cdot p_0(S)$

- Assume uniform prior for S (no clue what the strength is)
- Assume Gaussian prior for B (estimated in a sideband region)

MCNet School, Maria Spring, 06.08.2013

Monte Carlo methods in experimenta

Statistical formulation

• Setting limits: calculate marginal distribution for signal

$$p(S|data,\overline{H}) = \int dB \frac{p(data|\overline{H}, B, S) \cdot p_0(B) \cdot P_0(S)}{\int dB \int dS \ p(data|\overline{H}, B, S) \cdot p_0(B) \cdot P_0(S)}$$

Integrate until a certain probability is reached

Ensemble generation

• Generate sets of spectra from Monte Carlo events

Expected sensitivities

MCNet School, Maria Spring, 06.08.2013

Monte Carlo methods in experimenta

Ensemble tests

- Testing the background-only hypothesis:
 - Composition of samples: signal and background
 - Calculate probability p(H|data) for each spectrum
 - Calculate mode of signal contribution for each spectrum
- Example:
 - Input S = 20.4, B = 10
 - Average mode <S*>=20.3
 - More than 97% of ensembles have p(H|data)<0.0001, i.e. no claim of discovery in 3% of all cases

Expected sensitivities

MCNet School, Maria Spring, 06.08.2013

Monte Carlo methods in experimenta

Ensemble tests

- Setting limits (on small signals):
 - Composition of samples: only background
 - Calculate probability *p*(*H*|*data*) for each spectrum
 - Calculate 90% prob. limit on signal for each spectrum
- Example:
 - Input S = 0, B = 10
 - Average limit $< S_{an} > = 3.1$
 - No claim of discovery for any pseudodata set

Ensemble tests

- Physics interpretation:
 - Observed signal strength can be transformed into halflife of $0\nu\beta\beta$:

$$S \approx \ln(2) \kappa \epsilon \frac{N_A}{M_A} \cdot \frac{M \cdot t}{T_{1/2}}$$
 = exposure

• And into effective Majorana neutrino mass:

$$\langle m_{\beta\beta} \rangle = (T_{1/2} \cdot G_{0\nu})^{-1/2} \cdot \frac{1}{M_{0\nu}}$$
 nuclear matrix element

Sensitivity

- For a given exposure, define sensitivities as
 - expected 90% prob. lower limit on halflife of $0\nu\beta\beta$, or expected 90% prob. upper limit on neutrino mass;
 - half-life (or neutrino mass) for which 50% of all pseudodata sets claim a discovery

Bringing expectation and observation together

- Now add real data and set actual limits: Search for Z' boson, ATLAS-CONF-2013-017
- Repeat analysis on real data, treat pseudodata and data the same

• Note:

- Expected upper limit calculation uses ensembles without signal contribution, but
- fit a Z' hypothesis (template) with a certain Z' mass to the spectrum (plus background)
- Histogram the obtained limits and quote the median value as well as the central 68% and 95% envelope
- Exclude a Z' mass if limit is smaller than predicted cross-section (for a concrete model)

Monte Carlo methods in experimenta

Goodness-of-fit

- Situation:
 - Measurement is done
 - Chose one model over the other
 - Fitted all parameters
- To be done: judge if the data are described by the chosen model
- How to judge the goodness-of-fit? One way: use *p*-values
- Again, a three-step procedure:
 - Define a discrepancy variable (test statistic) *t* such that large values suggest a discrepancy between data and model.
 - Generate ensembles and calculate the test statistic for each ensemble
 - Compare the distribution of t, p(t), with the observed value of t, t_{obs} by calculating the tail-area probability to have found a larger value of t_{obs} .

MCNet School, Maria Spring, 06.08.2013

Monte Carlo methods in experimenta

p-values

• Tail-area probability:

 $p(t > t_{obs} | model) = \int dt \ p(t | model)$

- Small *p*-values: disagreement between data and model
- Repeated calculation of *p*-value results in a uniform distribution
- \bullet Pick a confidence level α and reject the model if

 $p(t > t_{obs} | model) < 1 - \alpha$

 For large α, this means a lot of ensembles (thus Monte Carlo events)

χ^2 variables

- Examples:
 - Gaussian χ^2 :

$$\chi^{2} = \sum_{i} \frac{(y_{i} - f(x_{i}))^{2}}{\sigma_{i}^{2}}$$

- Assume data are Gaussian distributed around expectation
- Ask for χ^2 /dof ~ 1 because < χ^2 > = dof
- Spread also important, thus quote χ^2 -probability

$$\chi_N^2 = \sum_i \frac{(n_i - v_i)^2}{n_i}$$

Pearson χ^2 : $\chi^2_N = \sum_i \frac{(n_i - \nu_i)^2}{\nu_i}$

MCNet School, Maria Spring, 06.08.2013

Monte Carlo methods in experimenta

with parameter values ($A = 0, B = 0.5, C = 0.02, D = 15, \sigma = 0.5, \mu = 5.0$).

MCNet School, Maria Spring, 06.08.2013

Monte Carlo methods in experimenta

An example

			Small range		Large range	
	Model	Par	Min	Max	Min	Max
I.	$A_{\mathrm{I}} + B_{\mathrm{I}} x_i + C_{\mathrm{I}} x_i^2$	A_{I}	0	5	-50	200
		$B_{\rm I}$	0	1.2	-50	200
		C_{I}	-0.1	0.1	-50	200
II.	$A_{\rm II} + \frac{D_{\rm II}}{\sigma_{\rm II}\sqrt{2\pi}} e^{-\frac{(x_i - \mu_{\rm II})^2}{2\sigma_{\rm II}^2}}$	A_{II}	0	10	-50	200
		$B_{\rm II}$	0	200	-50	200
		μ_{II}	2	18	0	50
		$\sigma_{ m II}$	0.2	4	0	20
III.	$A_{\rm III} + B_{\rm III} x_i + \frac{D_{\rm III}}{\sigma_{\rm III} \sqrt{2\pi}} e^{-\frac{(x_i - \mu_{\rm III})^2}{2\sigma_{\rm III}^2}}$	$A_{\rm III}$	0	10	-50	200
		$B_{\rm III}$	0	2	-50	200
		$D_{\rm III}$	0	200	0	200
		μ_{III}	2	18	0	50
		σ_{III}	0.2	4	0	20
IV.	$A_{\rm IV} + B_{\rm IV} x_i + C_{\rm IV} x_i^2 + \frac{D_{\rm IV}}{\sigma_{\rm IV} \sqrt{2\pi}} e^{-\frac{(x_i - \mu_{\rm IV})^2}{2\sigma_{\rm IV}^2}}$	$A_{\rm IV}$	0	10	-50	200
		$B_{\rm IV}$	0	2	-50	200
		$C_{\rm IV}$	0	0.5	-50	200
		$D_{\rm IV}$	0	200	0	200
		$\mu_{ m IV}$	2	18	0	50
		$\sigma_{ m IV}$	0.2	4	0	20

MCNet School, Maria Spring, 06.08.2013

Monte Carlo methods in experimenta

An example

Limits, sensitivities and all that

MCNet School, Maria Spring, 06.08.2013

Monte Carlo methods in experimenta

Outline

- Lecture 1: Crash course in (Bayesian) statistics and Markov Chain Monte Carlo
- Lecture 2: Limits, sensitivities and all that
- Summary and outlook

Summary (Limits)

- Direct model comparison (useful for comparing different MC generators)
- Ensemble tests are a powerful tool for calculating
 - expected sensitivities (limits, observations, uncertainties, etc.),
 - properties of estimators and discrepancy variables,
 - measures of goodness-of-fit
- Often: prefer numerical solution over a bad approximation (p-values)

Summary

- Monte Carlo methods are crucial part in experimental HEP
- Context is often statistical inference
 - Parameter estimation, fitting large-dimensional problems
 - Ensemble tests and expected sensitivities
 - Goodness-of-fit tests and *p*-values