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MASTER EQUATION FOR HADRON
COLLIDERS

o — Eb: / dydzy fo(21s 1im) oo, for) dBapx (5s 1 1)

Parton density Parton-level
functions (differential)

Cross section

% Parton-level cross section from matrix elements: model
and process dependent

# Parton density (or distribution) functions: process
independent

¢ Differences between colliders given by parton
luminosities
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A

reduced

N

in the running coupling and the

PDF's 1s compensated for via the loop

% First order where scale dependence

corrections: first reliable estimate

of the total cross section

¢ Better description of final state:

impact of extra radiation included

(e.g. jets can have substructure)

Al

partonic channels

Rikkert Frederix

% Opening of additional initial state

% At NLO the dependence on the renormalization and factorization scales 1s

o |
Top produstisn va g, V3=14Ta¥

LD, ctegBll, (M )=0.130

LA, ctegf_m, oM )=0.1156




NLO...?

Al

% Are all (IR-safe) observables that we can compute using a NLO code
correctly described at NLO? Suppose we have a NLO code for pp — ttbar

I TTOOO0 — ‘ I TTOTOO — f 9 DOOOO0— t

O [ Real E Virt

wa‘%j t 7 TBouTO

¢ Total cross section

% Transverse momentum of the top quark

e ) :
 Transverse momentum of the jet

w T . . .
Aop-antltop Invariant mass

v
v
# Transverse momentum of the top-antitop pair X
X
v
X

¢ Azimuthal distance between the top and anti-top
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% Let us focus on NLO... there are already enough steps to be taken:

NA
Z\J

Virtual amplitudes: how to compute the loops automatically in a
reasonable amount of time

R
K

* How to deal with infra-red divergences: virtual corrections and real-
emission corrections are separately divergent and only their sum 1s

finite (for IR-safe observables) according to the KLLN theorem

Al
N}

How to match these processes to a parton shower without double
counting
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ONE-LOOP INTEGRAL

\I

% Consider this m-point
loop diagram with »
external momenta

A

% The integral to compute 1s

[N
DoD1 Dy -+ Dyp—q

D; = +p)*—m:

1




STANDARD APPROACH

¢ Passarino-Veltman reduction:

N(1) 1
d E : d
? ff@
/d lDODlDQ"'Dm_]_ i o /d ZDODl---

% Reduce a general integral to “scalar integrals” by
“completing the square”

#* Let’s do an example:
Suppose we want to calculate this triangle integral

q [

Pt / d] [H
. 2m)4 2 (I +p)* (I +q)?
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/ d?l [H
(2m)® 12 (I + p)* (I + q)?
% The only independent four vectors are p# and ¢# . Theretore, the integral

must be proportional to those. We can set-up a system of linear equations
and try to solve for C1 and C»

/gjidﬂawigmqv AL )< gi )

% We can solve for C1 and C2 by contracting with p and ¢

(5)=(Ba)=c(&)=(31 20)(8)
where [21-p] :/ dl 20 - p

(2m)d 12 (14 p)2 (I + q)

% By expressing 2/p and 2/.¢ as a sum of denominators we can express R|

5 (For simplicity, the masses are neglected here)

and Ro as a sum of simpler integrals, e.g.

[ di 20 - p [ dl (I4p)? -1 —p?
" _/ (2m)? (L +p)* (L + q)? _/(ZW)d (1 +p)*(l+q)?

_/ddz 1 _/ddz 1 _Q/ddl 1
) @m) i+ q)? 0d(+p20+q? © ) @n)lEI+p)2(+q)?
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¢ And similarly for Ro

[ d4 20 _ [ d% (+¢*-P-¢
RQ_/(Qw)dz2(l+p)2(l+q)2 _/(QW)d (I +p)2(l+9)°

_/ddz 1 _/ddz 1 _Q/ddl 1
J @m)dR(+p)? Cml (42 +92 ) CrIRI+p)(+q)
% Now we can solve the equation
(2)-(B2)-o(2)- (31 223
Ry 20 - q] Ca )\ 2p-q 2q-¢q Cs
by inverting the “Gram” matrix G
Ci \ 1 I
(c)=e(m)

and we have expressed our original integral

/<§Z;§dﬂ<z+p§2<z+q>2 AL )< . )

in terms of known, simpler integrals and we are done!
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HIGHER POINT INTEGRALS

R
N\

For loop integrals with many legs,
the reduction to scalar integrals
can still be performed

Only up to 4-point scalar integrals
are needed (in 4 dimensions)!

The proof 1s beyond the scope of

these lectures (it is straight forward by

using the Van Neerven-Vermaseren basis

for the loop momentum); 1t 1s related
to the fact that in 4 dimensions
only four 4-vectors can be linearly
independent

11



BASIS OF SCALAR INTEGRALS

A 1-loop _ Z d. . . % The a, b, ¢, d and R

20212223B0Xi0i1’i2i3 .
coefﬁments depend only

10 <t1<t2<13
on external parameters
- Z Cigiyis Trlangleioq;lz‘Q and momenta
’l:o<7:1<’i2 D l—|—pz) 2
+ ) b;,i, Bubble;,,
o o ot Tadpole; /
10<1?1
+ Z a;, Ladpole;_ Bubble;;, = /
10
Triangle; ; ;. = dl
+R + O(e) - D D D
1
BoXiyiigis = [ dl
OX 0t1¢62¢3 Dio DilDiQ Di3

e All these scalar integrals are known and available in computer libraries
(FF [v. Oldenborgh], QCDLoop [Ellis, Zanderighi], OneLOop [v. Hameren])

P S =



DIVERGENCES

1-1
MR = Z di0i1i2i3BOX’io’i1i2i3 D; = (1 ‘|’pi)2 - m,%
10<11<12<13 1
, Tadpole; = / dl

—|_ Z CiOil 19 Trla;ng].e,LO,Ll io Dio
e 1

—I_ Z bioilBUbbleiOil . d 1
s Triangle; ; ;. = [ d lDz'o D;. D,

| 1
" ; Gio Tadp()leio BoXigirizis = ddlDio D; D,;,D,,
0
+R + Ofe)

% The coethcients d, ¢, b and a are finite and do not contain poles in 1/¢
% The 1/e dependence 1s in the scalar integrals (and the UV renormalization)

% When we have solved this system (and included the UV renormalization) we have
the full dependence on the soft/collinear divergences in terms of coefficients in
front of the poles. These divergences should cancel against divergences 1n the real
emission corrections (according to KLIN theorem)

vl | U2

Virtual ~ vg 4 |
€ €
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Al

# In our example the decomposition to scalar integrals was “exact”, 1.e. there
were no left-over terms.

% This 1s true for most integrals. Only if the rank of the integral 1s

r > max{(N —1),2}

there are some extra contributions which are called “Rational terms” that
are not proportional to a scalar integral

Al

% They are of UV origin and come from the € (dimensional regulator)
dependence of the integral times a scalar integral that 1s UV divergent

Rational terms ~ eBy(p, m1,m2)

(The Bubble scalar integrals are the only UV divergent scalar integrals)

\I

% When taking the imit € — 0, only the leading contribution remains, which
are iIndependent from the scalar integral itself
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Al

e Advantage:

Al

% The method above can be straight-forwardly generalized to
any one-loop integral (appearing in a renormalizable theory)

Al

#* Disadvantage:

Al

¢ For relatively simple processes, the number of terms already
explodes (several 100 MB of code is no exception for the matrix elements of a
2 — 3 process); simplifications require hard work and are

dithcult to do in a general way
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NEW LOOP TECHNIQUES

% The “loop revolution”: new techniques for computing one-loop
matrix elements are now established:

% Generalized unitarity (e.g. BlackHat, Njet, ...)
[Bern, Dixon, Dunbar, Kosower, 1994...; Ellis Giele Kunst 2007 + Melnikov 2008; Badger...]

¢ Integrand reduction (OPP method) (e.g. Madl.oop, GoSam)
[Ossola, Papadopoulos, Pittau 2006; del Aguila, Pittau 2004; Mastrolia, Ossola, Reiter,
Tramontano 2010;...]

# Tensor reduction (e.g. Golem, Openloops)
[Passarino, Veltman 1979; Denner, Dittmaier 2005; Binoth Guillet, Heinrich, Pilon, Reiter
2008; Cascioli, Maierhofer, Pozzorini 2011;...]
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PERSONAL BIAS

Z

A
7

\/

A
N

N

This 1s a technical, complicated topic

A

% I've got only 1 hour, which means that I can only explain one of the
methods

A

¢ Generalized unitarity works extremely well for processes with many

massless partons around: e.g. W+4jets
(also only including leading color approximation simplifies a lot here)

A\l
N

=
7

ZI\

The integrand reduction method scales worse with including extra light

jets, but performs very well when there are massive particles around
(top and bottom quarks)

e Integrand reduction 1s used 1n packages that aim for automation of
NLO corrections to any SM process, which 1s why I focus on this

method only.
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\!

¢ Remember we only need to determine the coethicients in front of the

scalar integrals VAR REE = R S o R B s
¢ The PV decomposition to scalar integrals to<t1<t2<t3

presented before works at the level of + Z Cigiqis Triangleio i1in

the integrals io<i1 <ig
% If we would know a similar relation at v Z bioin Bubblesoq,

the integrand level, we would be able o=

to manipulate the integrands and ™ Z a;, Ladpole;,

extract the coethcients without doing "0

the integrals +1 + Ofe)

Al

¢ This 1s exactly what the OPP reduction does

Al

¢ The decomposition 1s the same, except that there might be
contributions that integrate to zero
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AT THE INTEGRAND LEVEL

¢ Consider, e.g., the Box coefhicient:

L A%l !

ot Dy, D;, Dy, D;,
Aigiyizis

DioDilDigDiB

:/ddldioil’i2’i3 +dioi1i2i3(l)
Dy, Dy, Di, Dy,

d

o Aais DO g ey = @

— [ d9

ddl dv’ioilizi:a (l) —0
Dy, Di, D, D,

where

¢ And similarly for the ¢, 4, @ and R terms

¢ The contributions that vanish when doing the integral are called
“spurious terms”
Rikkert Frederix
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ONE-LOOP INTEGRAL

loop diagram with n
external momenta

1S

DoD1 Dy -+ Dy

Dz’ — (l —|—qu)2 — mf
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OPP DECOMPOSITION

Al

. d’l
% For the numerator of any mtegrand of a one- /
loop computation we can therefore write

m—1 m—1

N = ) {dioi1i2z‘3+d}oi1i2z‘3(l)} 1] Db

.....

10<11<12<13 1#10,11,12,13

m—1 m—1

™ Z |:C7:O7;17:2 =+ Eioilig (l)} H l)z

10<11 <12 17£20,11,12

m—1 m—1
+ Z |:bi07;1 +Ei0i1(l)] H D;

10<11 170,01

m—1 m—1
+ 3 Jai, +ai, ()| TT D

i
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N(I)

DoD1Dg - Dy 1
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NUMERICAL EVALUATION

KA

¢ By choosing specific values for the loop momentum /, we end up
with a system of linear equations

Al

% In a renormalizable theory, the rank of the integrand 1s always
smaller (or equal) to the number of particles in the loop (with

a conveniently chosen gauge)

% We can straight-forwardly set the it up by sampling the
numerator numerically for various values of the loop
momentum /

A

% By choosing / smartly, the system greatly reduces

Al

% In particular when we chose / to be a complex 4-vector
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FUNCTIONAL FORM OF THE
SPURIOUS TERMS

% The functional form of the spurious terms is known (it
depends on the rank of the integral and the number of
propagators in the loop) [del Aguila, Pittau 2004]

¢ for example, a box coethcient from a rank 1 numerator 1s

7 _J Vpo VP oo

igiyizis (1) = digiyizis €7P7 1 PYP2P3
(remember that Pi 1S the sum of the momentum that has
entered the loop so far, so we always have po = 0)

5% The integral 1S Z€ero

~

ddl dioi1i2i3(l) 7 /ddle,ul/pa l'upﬁpgpg — 0

DoDyDyDs ofatzis DoD Do D
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m—1 m—1

NO= ) [dz’oz‘lmg + Jioilizig(l)} D;
10<11<12<13 17#10,11,12,13
m—1 m—1
4 Z [Cioilz‘z - Eioilz’g(l)} H D;
10<t1<ig 1%#1%0,%1,%2
~ , ; To solve the OPP reduction, choosing special
+ ; { ioin T Diia ] H Di values for the loop momenta helps a lot
10<1?1 { 'LO 11
m—1 For example, choosing / such that
+ Z {CL@'O + a;, (l)} H D; . p . g N N
s Do) = Dy (I%) = Dy(i*) = Ds(i*) = 0
m—1
+P(1) [] D: sets all the terms in this equation to zero
i except the first line

There are two (complex) solutions to this
equation due to the quadratic nature of the
propagators
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N (1) = doras + dor2s(IF

R

)

¢ Two values are enough given the functional form for the

spurious term. We can immediately determine the Box

coefthicient

1

do123 = 5

A

N(T)

N(I™)

[

m—1
1#£0,1,2,3 Di(l+)

[l

m—1
1#0,1,2,3

D;(1)

¢ By choosing other values for /, that set other combinations of

4 “denominators” to zero, we can get all the Box coefhicients

Rikkert Frederix
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A

¢ Now that we have all the Box coefthicients we can start choosing values
for / that set 3 “denominators” to zero to get the Triangle coetficients. Of
course, now both the first and the second lines contribute.

m—1 m—1

N(l) - Z [di0i1i2i3 + d~’io?31’i2i3 (l)} D;

10<11<12<13 1#10,21,12,13

m—1
T Z [Cioil’&é T EioiliQ (l)} H Dz

10<11<12 120,21 ,12

A

% We already have solved the coethcients of the first line in the previous
iteration, so also here there is only a simple system of equations to solve

Al

% Once we have all the Triangle coefhicients, we can continue to determine

the Bubble coethcients; and finally the Tadpole coethicients

Rikkert Frederix 9



A

¢ For each phase-space point we have to solve the system of
equations

element, amplitude, diagram or anywhere in between. As long as
we provide the corresponding numerator function

Alx

% For a given phase-space point, we have to compute the numerator
function several times (~50 or so for a 4-point loop diagram)

Rikkert Frederix
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COMPLICATIONS IN D
DIMENSIONS

“¢ In the previous consideration | was very sloppy in considering if
we are working in 4 or d dimensions

# In general, external momenta and polarization vectors are in 4
dimensions; only the loop momentum 1s in d dimensions

¢ To be more correct, we compute the integral

/ddl o / \
DoD1D3 -+ - Dy, g d dim 4 dim epsilon dim

Di=(l+p)2 —m?=(1+p)?—m2+1?=D, +[?

. 1=0 [-p; =1 p; L l=1-1+1-1

P S 2
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=
—

I\

The decomposition in
terms of scalar integrals

has to be done in d
dimensions

% This 1s why the rational
part R 1s needed

29



R

% The main difference 1s how we get the rational terms (we
already saw them 1in the Passarino-Veltman reduction)

% In the OPP method, they are split into two contributions,

generally called
R=R;+ R5

¢ Both have their origin in the UV part of the model, but only
Ri1 can be directly computed in the OPP reduction

Rikkert Frederix
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\V

The origin of Ri 1s coming 1s the denominators of the
propagators in the loop

1 L1 P
D;, D; D D,

% Of course, the propagator structure i1s known, so these

~

contributions can be included in the OPP reduction

Al

#* They give contributions proportional to

& i (pi — p;)°
dl — — |m? 2 _ b b O
DZDJ 2 mZ—I_m,] 3 —|— (6)
o in?
dN=—e==——+0
/ D; D, Dy y TOl
- /4 G2
==+ 0
/ DD, Dy D g OO
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Al

% The other origin of rational terms 1s the numerator itself. For integrals
with rank > 2 we can have dependence in the numerator that 1s
proportional to [

Al

# Unfortunately, this dependence can be quite hidden; maybe it is only
explicitly there after doing the Clifford algebra

Al

¢ Because we want to solve the system without doing this algebra

analytically (we want to solve it numerically) we cannot get these
contributions directly within the OPP reduction

\l

Q
7

¢ Within a given model, there 1s only a finite number of sources that can
give these contributions; They have all been 1dentified within the SM,
and can be computed with the “Ro counter terms”

Rikkert Frederix
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¢ Given that the Ro contributions are of UV origin, only up to 4-point
functions contribute to it (in a renormalizable theory)

¢ They can be computed using special Feynman rules, similarly to the
UV counter term Feynman rules needed for the UV renormalization,

e.g. .
) 2
£, 1g° N, — 1
—@— — < Or7(— 2 A
I I 1672 2N,.; k(=P + 2mq) Ay
k
3 2
tg N col a
— t 1+ )
[ [ Draggiotis, Garzelli, Papadopoulos, Pittau]

¢ Unfortunately these Feynman rules are model dependent, which
means the need to be explicitly computed when going to BSM (Just

like the UV renormalisation)
Rikkert Frederix



A

N

In PV reduction, we need analytic expressions for all the integrals. Possible
to automate, but in practice too many terms which are dithcult to simphity

¢ In OPP reduction we reduce the system at the integrand level.

Al

% We can solve the system numerically: we only need a numerical function
of the (numerator of) integrand. We can set-up a system of linear
equations by choosing specific values for the loop momentum /
depending on the kinematics of the event

% OPP reduction 1s implemented in CutTools and GoSam (both publicly
available). Given the integrand, they provide all the coefhicients in front
of the scalar integrals and the R; term

5% The OPP reduction leads to numerical unstabilities whose origins are
related to the inverse Gram determinants.

¢ Analytic information 1s needed for the Ry term, but can be compute once

and for all for any given BSM model

Rikkert Frederix
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L

Al

N

/N

NLO calculations have been completely automated and are
(almost) as easy to run as LO

\I
I

¢ Also the matching to the parton shower that allows for event
generation at NLO 1s automated

L

Al

A

wN

This means that at zero extra (human) effort NLO event
samples can be generated instead of LLO ones

Al

% No good reason anymore to use only [LO in your analysis
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