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A Monte Carlo Event

t

t̄

Hard Process, usually
calculated at leading order
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A Monte Carlo Event
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A Monte Carlo Event
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Matching

Parton showers describe the bulk of the radiation correctly.

While soft or collinear radiation dominates often we are
interested in the emission of additional hard radiation.

Should not described well by the parton shower, although
often better than expected.

Often there are regions of phase space which aren’t filled at
all.

At high p⊥ even if there is some radiation the rate is wrong.
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Matching

Let’s start by considering
the example of qq̄ → Z 0.

If we have an additional
gluon qq̄ → gZ 0 then
ŝ = (pq + pq̄)

2,
t̂ = (pq − pg )

2 and
s̄ = ŝ/M2

Z , t̄ = t̂/M2
Z .

In the Herwig++ angular
ordered parton shower there
is a dead-zone where there is
no radiation in the
parton-shower.

q

q̄
Z 0

ℓ−

ℓ+
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Matching

Similar problems in all processes

e+e− → bb̄ t → bW+
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Matching

Need to

1 Correct the radiation in the filled region using the qq̄ → Z 0

matrix element. In the already filled region have to correct any
emission which is the hardest so far, exponentiates the full
result.

2 Fill the dead zone according to the qq̄ → Z 0 matrix element.

In PYTHIA the shower can be adjusted to fill the whole
region so just need the first step.
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Matching
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Higher Order Corrections

As the two separate parts of the NLO cross
section are infinite calculating the cross section
numerical is a problem.

However, we can use the universal properties to
construct a subtraction counter-term which has
the same singularities as the matrix element for
real emission.

Pick a counter-term which can be analytically
integrated in d = 4− 2ǫ dimensions and added
to the virtual piece

dσ = B(v)dΦv + (V (v) + C (v , r))dΦrdΦv

+(R(v , r)− C (v , r))dΦvdΦr

q

q̄

V
ℓ−

ℓ+

q

q̄

V
ℓ−

ℓ+

q

q̄

V
ℓ−

ℓ+
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NLO Simulations

NLO simulations rearrange the NLO cross section formula.

Either choose C (v , r) to be the shower approximation.

dσ = B(v)dΦv + (V (v) + Cshower(v , r))dΦrdΦv

+(R(v , r)− Cshower(v , r))dΦvdΦr

MC@NLO, Friction and Webber

This was the first practical approach for combining
next-to-leading-order calculations and the parton shower.
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NLO Simulations

A alternative rearrangement (POWHEG, Nason) is

dσ = B̄(v)dΦv

[

∆
(NLO)
R (0) + ∆

(NLO)
R (p⊥)

R(v , r)

B(v)
dΦr

]

,

where

B̄(v) = B(v) + V (v) +

∫

[R(v , r)− C (v , r)] dΦr ,

∆
(NLO)
R (p⊥) = exp

[

−

∫

dΦr
R(v , r)

B(v)
θ(k⊥(v , r)− p⊥)

]

.

Looks more complicated but has the advantage that it is
independent of the shower and only generates positive weights.
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Improved Simulations of Drell-Yan

CDF Run I Z pT D0 Run II Z pT
JHEP 0810:015,2008 Hamilton
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Different Approaches

The two approaches are the
same to NLO.

Differ in the sub-leading
terms.

In particular at large p⊥

dσ ≃ R(v , r)dΦvdΦr MC@NLO

dσ ≃
B̄(v)

B(v)
R(v , r)dΦvdΦr POWHEG

JHEP 0904:002,2009 Alioli et. al.
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Pros and Cons

POWHEG

Positive weights.

Implementation doesn’t
depend on the shower
algorithm.

Needs changes to shower
algorithm for non-p⊥
ordered showers.

Differs from shower and
NLO results, but changes
can be made to give NLO
result at large p⊥.

MC@NLO

Negative weights.

Implementation depends on
the specific shower
algorithm used.

No changes to parton
shower.

Reduces to the exact shower
result at low pT and NLO
result at high p⊥.
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Multi-Jet Leading Order

While the NLO approach is good for one hard additional jet
and the overall normalization it cannot be used to give many
jets.

Therefore to simulate these processes use matching at leading
order to get many hard emissions correct.

The most sophisticated approaches are variants of the CKKW
method (Catani, Krauss, Kuhn and Webber JHEP 0111:063,2001)

Recent new approaches in SHERPA (Hoeche, Krauss, Schumann, Siegert, JHEP

0905:053,2009) and Herwig++(JHEP 0911:038,2009 Hamilton, PR, Tully)
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CKKW Procedure

In order to match the ME and PS we need to separate the
phase space:

one region contains the soft/collinear region and is filled by the
PS;
the other is filled by the matrix element.

In these approaches the phase space is separated using in
k⊥-type jet algorithm.

Radiation above a cut-off value of the jet measure is
simulated by the matrix element and radiation below the
cut-off by the parton shower.
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CKKW Procedure

1 Select the jet multiplicity with probability

Pn =
σn

∑k=N
k=0 σk

,

where σn is the n-jet matrix element evaluated at resolution
dini using dini as the scale for the PDFs and αS , n is the
number of additional jets.

2 Distribute the jet momenta according to the ME.
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CKKW Procedure

3 Cluster the partons to
determine the values at
which 1,2,..n-jets are
resolved. These give the
nodal scales for a tree
diagram.

4 Apply a coupling-constant
reweighting
αS (d1) . . . αS (dn)/(αS (dini)

n ≤ 1.

dini

dini

dini

dini

e−

νe

W−

d1d2

d3
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CKKW Procedure

5 Reweight the lines by a
Sudakov factor
∆(dini, dj )/∆(dini, dk).

6 Accept the configuration if
the product of the αS and
Sudakov weight is less the
R ∈ [0, 1]., otherwise return
to step 1.

7 Generate the parton shower
from the event starting the
evolution of each parton at
the scale it was created and
vetoing emission above the
scale dini.

dini

dini

dini

dini

e−

νe

W−

d1d2

d3

∆(dini, d2)

∆(dini, d3)

∆(dini, d1)

∆(dini, d1)

∆(dini,d3)
∆(dini,d2)

∆(dini,d2)
∆(dini,d1)
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CKKW

Recent improvements use an idea from POWHEG to simulate
soft radiation rather than the enhanced emission scale.

Gives improved results.

Also first work on combine both higher orders and higher
multiplicities.
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Z + Jets
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SHERPA JHEP 0905:053,2009 compared to data from CDF Phys.Rev.Lett.100:102001,2008
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Introduction

As well as the hard perturbative
scattering there is additional
hadronic activity.

This must be modelled as it is both
observable and can have a large
effect on jet energies.

Before we can discuss the models
we will first need to understand the
definitions of the various types of
event.

We will then discuss the various
different models.

p⟂
ln
σ
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Hadronic Cross Sections

The total hadronic cross section consists of various
components

σtotal = σelastic+σsingle−diffractive+σdouble−diffractive+· · ·+σnon−diffractive

�

���

Experimentally minimum bias ≈ all events with no bias from
trigger conditions

Theoretically σmin−bias ≈ σdouble−diffractive + σnon−diffractive
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Hadronic Cross Sections

�

���

underlying event

jet

pedestal height

The underlying is the additional activity from soft interactions
in additional to the primary hard partonic process.
This is a theoretical definition and such a separate is model
dependent.
However we except the description to be similar to the one we
need for the bulk of non-diffractive events.
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Multiparton Interaction Models

The cross-section for 2 → 2
scattering is dominated by
t-channel channel gluon exchange.

It diverges like

dσ̂

dp2⊥
=

1

p4⊥
for p⊥ → 0

This must be regulated used a cut
p⊥ > pmin

⊥ .
 [GeV]

T,min
p

1 2 3 4 5 6 7

 [
m

b]
σ

210

310

410
MRST2007 LO*

CTEQ6L

MRST2001 int.

DL
DL+CDF

DL soft + hard

For small values of pmin
⊥ this is larger than the total

hadron–hadron cross section.

More than one parton-parton scattering per hadron collision.
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Matter Distribution

Hadrons are extended objects so we also need the matter
distribution.

Assume the dependence in x (‖ to the beam) and b (⊥ to the
beam) factorizes

Gi (x ,~b;µ
2) = fi(x ;µ

2)S(~b).

and the n-parton distributions are “independent”

G (xi , xj ,~bi ,~bj , µ
2) = Gi(xi ,~bi ;µ

2)Gj(xj ,~bj ;µ
2)
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Matter Distribution

The inclusive cross section for pp → jets is

σinc =

∫

ECMF

2

pmin
⊥

∫

dx1

∫

dx2
∑

ij

fi (x1, p
2
⊥)fj(x2, p

2
⊥)

dσ̂ij
dp⊥

The b dependence from

A(b) =

∫

d2b1S(b1)

∫

d2b2S(b2)δ(b − b1 + b2)

is normalised such that
∫

db2A(b) = 1.

If we assume the separate scatters are uncorrelated, i.e. they
obey Poissonian statistics.

The average number of scatters per event is

〈n〉 =
σinc
σnd

.
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Matter Distribution

Alternatively the probability of m scatters is

Pm =
[A(b)σinc]

m

m!
exp (−A(b)σinc) .

The total cross (non-diffractive) cross section is

σnd =

∫

db2
∞
∑

m=1

Pm =

∫

db2 [1− exp (−A(b)σinc)]

Therefore

〈n〉 =

∫

db2
∑∞

m=1 mPm
∫

db2
∑∞

m=1 Pm

=

∫

db2〈n(b)〉
∫

db2 [1− exp (−〈n(b)〉)]
=

σinc
σnd
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Matter Distribution

Use either the electromagnetic form factor

SP(~b) =

∫

d2~k

2π

e i
~k·~b

1 + |~k |

giving

A(b) =
µ2

96π
(µb)2K3(µb).

or an empirical double Gaussian double Gaussian

ρmatter(r) = N1 exp

(

−
r2

r21

)

+ N2 exp

(

−
r2

r22

)

where r1 6= r2 gives “hot spots” and

A(b) =

∫

d3dtρboosted1,matter(x , t)ρ
boosted
2,matter(x , t)
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Matter Distribution
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old double Gaussian

Gaussian
ExpOfPow(d=1.35)

exponential
EM form factor p

p

b

Average activity at b proportional to A(b)

Central collisions more active, broader than Poissonian

Peripheral collisions normally give few if any collisions.
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Multiparton Interaction Models

If the interactions occur independently obeys Poissonian
statistics

Pn =
〈n〉n

n!
e−〈n〉

However energy-momentum conservation tends to suppressed
large numbers of parton scatterings.
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Number of Interactions

10
-3

10
-2

10
-1

1

1 10
10

-3

10
-2

10
-1

1

1 10
Ninteractions

P
ro

ba
bi

lit
y(

N
)

Probability Distribution of the Number of Parton Interactions

200 GeV p+pbar Inelastic, Non-Diffractive

Pythia 6.423

Perugia 0 <3.0>

Pro-pTO <3.0>

Pro-Q2O <3.8>

DW <4.0>

10
-3

10
-2

10
-1

1

1 10
10

-3

10
-2

10
-1

1

1 10
Ninteractions

P
ro

ba
bi

lit
y(

N
)

Probability Distribution of the Number of Parton Interactions

 10 TeV p+p Inelastic, Non-Diffractive

Pythia 6.423

Perugia 0 <3.9>

Pro-pTO <5.4>

Pro-Q2O <9.4>

DW <7.7>

Peter Richardson Intro to MC Event Generation L4: Underlying Event



Intro to MC Event Generation L4: Underlying Event

PYTHIA Model

Don’t use a strict cut-off in p⊥

dσ̂

dp2⊥
∝

α2
S(p

2
⊥)

p4⊥
→

α2
S (p

2
⊥)

(+pp2⊥)
2

double Gaussian matter distribution,

PDFs rescaled for momentum conservation

Trace flavour content of remnant, including baryon number.

Colour arrangement among outgoing partons
Interactions ordered in decreasing p⊥, and evolution
interleaved with ISR

dP

dp⊥
=

(

dPMPI

dp⊥
+

dPISR

dp⊥

)

exp

(

−

∫ p⊥,i−1

p⊥

[

dPMPI

dp⊥
+

dPISR

dp⊥

]

dp′
⊥

)

Includes rescattering
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PYTHIA Model

interaction

number

p⊥

hard int.

1

mult. int.

2

mult. int.

3

mult int.

4

p
max

⊥

p
min

⊥

p⊥1

p⊥2

p⊥3

p⊥23

p⊥4

ISR

ISR

ISR

ISR

p
′
⊥1
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Herwig++ Model

In terms of the eikonal function χ(b, s).

σtot = 2

∫ ∞

0
db2

[

1− e−χ(b,s)
]

σela =

∫ ∞

0
db2

∣

∣

∣
1− e−χ(b,s)

∣

∣

∣

2

σinel =

∫ ∞

0
db2

[

1− e−2χ(b,s)
]

Take eikonal + partonic scattering seriously

σtot = 2

∫

d2b

(

1− exp

[

−
1

2
A(b)σinc

])

Given the form of the matter distribution predict σinc
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Herwig++ Model

Too restrictive

σtot = 2

∫

d2b

(

1− exp
1

2
[Asoft(b)σsoft,inc + Ahard(b)σhard,inc]

)

Gives two free parameters.

Independent perturbative scattering above pmin

⊥

Gluon scattering below pmin

⊥ with σsoft,inc and a Gaussian p⊥
distribution.
dσ
dp⊥

continuous at pmin
⊥ .

Includes colour reconnection of the partons in clusters
produced via MPI.
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Colour Correlations

Colour correlations can have
a big influence on the final
state.

In particular 〈p⊥〉 vs nch is
very sensitive to the colour
flow.

Long string to remnants
many charged particles

Short strings less charged
particles.
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x-Dependent Matter Distributions

Most models have a factorization
of the x and b matter dependence.

Corke & Sjöstrand JHEP 1105 (2011) 009 consider a
Gaussian matter distribution with
width

a(x) = a0

(

1 + a1 ln
1

x

)
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Older Models

UA5 Model (FORTRAN HERWIG)
Distribute a (∼negative binomial) number of clusters
independently in rapidity and transverse momentum according
to parametrisation/extrapolation of data;
modify for overall energy/momentum/flavour conservation
dσ/dp⊥;
no minijets; correlations only by cluster decays.

PHOJET
Use the optical theorem and pomerons
Unified framework of non-diffractive and diffractive interactions
Purely low-p⊥: only primordial k⊥ fluctuations
Usually simple Gaussian matter distribution

�

2

�
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Measurements

In principle all measurements at hadron collisions can be
sensitive to the underlying event.

There are three main types of measurement which are used to
study, constrain, and fit the parameters of the models.

1 Measurements which are sensitive to a second hard scattering
of a particular type.

2 Measurements of particle numbers, p⊥, etc. in phase-space
regions where we don’t expect perturbative radiation in hard
events.

3 Measurements of min-bias events.

Peter Richardson Intro to MC Event Generation L4: Underlying Event
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Double-Parton Scattering

Look at γ+jets events.

One pure QCD scattering and one γ+jet.

Define an effective cross section s.t.

σab =
σaσb
σeff

γ

T
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Double-Parton Scattering
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Intro to MC Event Generation L4: Underlying Event

Underlying event measurements

Classic approach is to define the event using a hard jet, or
other particle, e.g. Z 0.
The define toward, away, transverse max and transverse min
regions.
The transverse min region is most sensitive to the underlying
event, while transverse max can also be sensitive to
perturbative radiation.
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CDF Results Jets
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CDF Results Drell-Yan
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CDF Results
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First LHC Results
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First LHC Results
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First LHC Results

Before the LHC start there was some worry that the models
would completely fail.

In reality in good agreement with the early data.

Better agreement now after some tuning of the parameters.

In both Herwig++ and PYTHIA this needs the pmin

⊥

parameter to be energy dependent.

Older soft models don’t describe the data.
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Average transverse p⊥ vs Nch
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Transverse p⊥ density vs p⊥
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Transverse Nch density vs p⊥
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Charged Multiplicity
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Diffraction

In Regge theory scattering by resonance exchange, predates
QCD.

The Pomeron is the Regge trajectory of states with vacuum
quantum numbers, in QCD glueballs.

Gives the rates but not what the event look like.
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Beam Remnants

p

�

�

�

�

�

�

initiators:

in to hard

interaction

beam

remnants

Need to assign:

� correlated flavours

� correlated �� � ���������

� correlated primordial ���

� correlated colours

� correlated showers

PDF after preceding MI/ISR activity:
1 Squeeze range 0 < x < 1 into 0 < x < 1

∑

i xi
2 Valence quarks reduce by the number already kicked out.
3 Introduce companion quark q/q̄ to each kicked-out sea quark

q/q̄,with x based on assumed g → qq̄ splitting
4 Gluon and sea: rescale for total momentum conservation.

Colour flow connects hard scattering to beam remnants which
can have consequences.
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Summary

Underlying event is one of the least least understood aspects
of event generation.e

Modelled and only weakly constrained by existing data.

Models based on MPI describe the data well with a number of
refinements.
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