# Introduction to Monte Carlo Event Generation Lecture 4: Underlying Event

Peter Richardson

**IPPP** Durham

MCnet School: 5th August

- 4 回 ト - 4 回 ト



・ロト ・同ト ・ヨト ・ヨト

000



Peter Richardson Intro to MC Event Generation L4: Underlying Event



Peter Richardson Intro to MC Event Generation L4: Underlying Event





Peter Richardson Intro to MC Event Generation L4: Underlying Event



- Parton showers describe the bulk of the radiation correctly.
- While soft or collinear radiation dominates often we are interested in the emission of additional hard radiation.
- Should not described well by the parton shower, although often better than expected.
- Often there are regions of phase space which aren't filled at all.
- At high  $p_{\perp}$  even if there is some radiation the rate is wrong.

- 4 回 ト 4 ヨ ト 4 ヨ ト

- Let's start by considering the example of  $q\bar{q} \rightarrow Z^0$ .
- If we have an additional gluon  $q\bar{q} \rightarrow gZ^0$  then  $\hat{s} = (p_q + p_{\bar{q}})^2$ ,  $\hat{t} = (p_q - p_g)^2$  and  $\bar{s} = \hat{s}/M_Z^2$ ,  $\bar{t} = \hat{t}/M_Z^2$ .
- In the Herwig++ angular ordered parton shower there is a dead-zone where there is no radiation in the parton-shower.





Peter Richardson Intro to MC Event Generation L4: Underlying Event

< (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) < (27) <

< Ξ

æ

#### Need to

1 Correct the radiation in the filled region using the  $q\bar{q} \rightarrow Z^0$ matrix element. In the already filled region have to correct any emission which is the hardest so far, exponentiates the full result.

**2** Fill the dead zone according to the  $q\bar{q} \rightarrow Z^0$  matrix element.

In PYTHIA the shower can be adjusted to fill the whole region so just need the first step.

- 4 回 5 - 4 三 5 - 4 三 5



Peter Richardson Intro to MC Event Generation L4: Underlying Event

▲□ > ▲圖 > ▲ 圖 >

< ∃⇒

æ

# Higher Order Corrections

- As the two separate parts of the NLO cross section are infinite calculating the cross section numerical is a problem.
- However, we can use the universal properties to construct a subtraction counter-term which has the same singularities as the matrix element for real emission.
- Pick a counter-term which can be analytically integrated in  $d = 4 2\epsilon$  dimensions and added to the virtual piece

$$d\sigma = B(v)d\Phi_v + (V(v) + C(v, r))d\Phi_r d\Phi_v + (R(v, r) - C(v, r))d\Phi_v d\Phi_r$$



# **NLO Simulations**

NLO simulations rearrange the NLO cross section formula.
Either choose C(v, r) to be the shower approximation.

$$d\sigma = B(v)d\Phi_v + (V(v) + C_{\text{shower}}(v, r))d\Phi_r d\Phi_v + (R(v, r) - C_{\text{shower}}(v, r))d\Phi_v d\Phi_r$$

#### MC@NLO, Friction and Webber

This was the first practical approach for combining next-to-leading-order calculations and the parton shower.

- 4 回 ト 4 ヨ ト 4 ヨ ト

# **NLO Simulations**

A alternative rearrangement (POWHEG, Nason) is

$$\mathrm{d}\sigma = \bar{B}(v)\mathrm{d}\Phi_v \left[\Delta_R^{(\mathrm{NLO})}(0) + \Delta_R^{(\mathrm{NLO})}(p_\perp) \frac{R(v,r)}{B(v)} \mathrm{d}\Phi_r\right],$$

where

$$\begin{split} \bar{B}(v) &= B(v) + V(v) + \int \left[ R(v,r) - C(v,r) \right] \mathrm{d}\Phi_r, \\ \Delta_R^{(\mathrm{NLO})}(p_\perp) &= \exp\left[ -\int \mathrm{d}\Phi_r \frac{R(v,r)}{B(v)} \theta(k_\perp(v,r) - p_\perp) \right]. \end{split}$$

 Looks more complicated but has the advantage that it is independent of the shower and only generates positive weights.

・ 同 ト ・ ヨ ト ・ ヨ ト

#### Improved Simulations of Drell-Yan



JHEP 0810:015,2008 Hamilton

< E

#### **Different Approaches**

- The two approaches are the same to NLO.
- Differ in the sub-leading terms.
- In particular at large  $p_{\perp}$

$$d\sigma \simeq R(v, r) d\Phi_v d\Phi_r \qquad \text{MC@NLO}$$
$$d\sigma \simeq \frac{\bar{B}(v)}{B(v)} R(v, r) d\Phi_v d\Phi_r \quad \text{POWHEG}$$



JHEP 0904:002,2009 Alioli et. al.

2

3

# Pros and Cons

#### POWHEG

- Positive weights.
- Implementation doesn't depend on the shower algorithm.
- Needs changes to shower algorithm for non-p<sub>⊥</sub> ordered showers.
- Differs from shower and NLO results, but changes can be made to give NLO result at large p<sub>⊥</sub>.

#### MC@NLO

- Negative weights.
- Implementation depends on the specific shower algorithm used.
- No changes to parton shower.
- Reduces to the exact shower result at low p<sub>T</sub> and NLO result at high p<sub>⊥</sub>.

イロト イヨト イヨト

### Multi-Jet Leading Order

- While the NLO approach is good for one hard additional jet and the overall normalization it cannot be used to give many jets.
- Therefore to simulate these processes use matching at leading order to get many hard emissions correct.
- The most sophisticated approaches are variants of the CKKW method (Catani, Krauss, Kuhn and Webber JHEP 0111:063,2001)
- Recent new approaches in SHERPA (Hoeche, Krauss, Schumann, Siegert, JHEP 0905:053,2009) and Herwig++(JHEP 0911:038,2009 Hamilton, PR, Tully)

・ 回 と く ヨ と く ヨ と

- In order to match the ME and PS we need to separate the phase space:
  - one region contains the soft/collinear region and is filled by the PS;
  - the other is filled by the matrix element.
- In these approaches the phase space is separated using in k<sub>⊥</sub>-type jet algorithm.
- Radiation above a cut-off value of the jet measure is simulated by the matrix element and radiation below the cut-off by the parton shower.

- 4 回 ト 4 ヨ ト 4 ヨ ト

Select the jet multiplicity with probability

$$P_n = \frac{\sigma_n}{\sum_{k=0}^{k=N} \sigma_k},$$

where  $\sigma_n$  is the *n*-jet matrix element evaluated at resolution  $d_{\text{ini}}$  using  $d_{\text{ini}}$  as the scale for the PDFs and  $\alpha_S$ , *n* is the number of additional jets.

**2** Distribute the jet momenta according to the ME.

伺下 イヨト イヨト



- Reweight the lines by a 5 Sudakov factor  $\Delta(d_{\rm ini}, d_i) / \Delta(d_{\rm ini}, d_k).$
- 6 Accept the configuration if the product of the  $\alpha_{S}$  and Sudakov weight is less the  $\mathcal{R} \in [0,1]$ ., otherwise return to step 1.
- 7 Generate the parton shower from the event starting the evolution of each parton at the scale it was created and vetoing emission above the scale  $d_{\rm ini}$ .



 $d_{\rm ini}$ 

# CKKW

- Recent improvements use an idea from POWHEG to simulate soft radiation rather than the enhanced emission scale.
- Gives improved results.
- Also first work on combine both higher orders and higher multiplicities.

- 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □

3

#### Z + Jets



SHERPA JHEP 0905:053,2009 compared to data from CDF Phys.Rev.Lett.100:102001,2008

<ロ> (四) (四) (日) (日) (日)

æ

#### Introduction

- As well as the hard perturbative scattering there is additional hadronic activity.
- This must be modelled as it is both observable and can have a large effect on jet energies.
- Before we can discuss the models we will first need to understand the definitions of the various types of event.
- We will then discuss the various different models.



## Hadronic Cross Sections

The total hadronic cross section consists of various components

 $\sigma_{\text{total}} = \sigma_{\text{elastic}} + \sigma_{\text{single-diffractive}} + \sigma_{\text{double-diffractive}} + \dots + \sigma_{\text{non-diffractive}}$ 



■ Experimentally minimum bias ≈ all events with no bias from trigger conditions

• Theoretically  $\sigma_{\min-\text{bias}} \approx \sigma_{double-diffractive} + \sigma_{non-diffractive}$ 

3

# Hadronic Cross Sections



- The underlying is the additional activity from soft interactions in additional to the primary hard partonic process.
- This is a theoretical definition and such a separate is model dependent.
- However we except the description to be similar to the one we need for the bulk of non-diffractive events.

#### Multiparton Interaction Models

- The cross-section for 2 → 2 scattering is dominated by t-channel channel gluon exchange.
- It diverges like

$$rac{\mathrm{d}\hat{\sigma}}{\mathrm{d}p_{\perp}^2} = rac{1}{p_{\perp}^4} \quad \mathrm{for} \quad p_{\perp} 
ightarrow 0$$



· < @ > < 문 > < 문 > · · 문

- This must be regulated used a cut  $p_{\perp} > p_{\perp}^{\min}$ .
- For small values of p<sup>min</sup><sub>⊥</sub> this is larger than the total hadron-hadron cross section.
- More than one parton-parton scattering per hadron collision.

- Hadrons are extended objects so we also need the matter distribution.
- Assume the dependence in x (|| to the beam) and b (⊥ to the beam) factorizes

$$G_i(x, \vec{b}; \mu^2) = f_i(x; \mu^2)S(\vec{b}).$$

and the *n*-parton distributions are "independent"

$$G(x_i, x_j, \vec{b}_i, \vec{b}_j, \mu^2) = G_i(x_i, \vec{b}_i; \mu^2)G_j(x_j, \vec{b}_j; \mu^2)$$

ヘロン 人間 とくほど くほど

 $\blacksquare$  The inclusive cross section for  $pp \to {\rm jets}$  is

$$\sigma_{\rm inc} = \int_{p_{\perp}^{\rm min}}^{\frac{E_{\rm CMF}}{2}} \int \mathrm{d}x_1 \int \mathrm{d}x_2 \sum_{ij} f_i(x_1, p_{\perp}^2) f_j(x_2, p_{\perp}^2) \frac{\mathrm{d}\hat{\sigma}_{ij}}{\mathrm{d}p_{\perp}}$$

The b dependence from

$$A(b) = \int \mathrm{d}^2 b_1 S(b_1) \int \mathrm{d}^2 b_2 S(b_2) \delta(b - b_1 + b_2)$$

is normalised such that  $\int db^2 A(b) = 1$ .

- If we assume the separate scatters are uncorrelated, *i.e.* they obey Poissonian statistics.
- The average number of scatters per event is

$$\langle n \rangle = \frac{\sigma_{\rm inc}}{\sigma_{\rm nd}}.$$

A (B) + A (B) + A (B) +

Alternatively the probability of m scatters is

$$P_m = \frac{[A(b)\sigma_{\rm inc}]^m}{m!} \exp\left(-A(b)\sigma_{\rm inc}\right).$$

The total cross (non-diffractive) cross section is

$$\sigma_{\rm nd} = \int \mathrm{d}b^2 \sum_{m=1}^{\infty} P_m = \int \mathrm{d}b^2 \left[1 - \exp\left(-A(b)\sigma_{\rm inc}\right)\right]$$

Therefore

$$\langle n \rangle = \frac{\int \mathrm{d}b^2 \sum_{m=1}^{\infty} m P_m}{\int \mathrm{d}b^2 \sum_{m=1}^{\infty} P_m} = \frac{\int \mathrm{d}b^2 \langle n(b) \rangle}{\int \mathrm{d}b^2 \left[1 - \exp\left(-\langle n(b) \rangle\right)\right]} = \frac{\sigma_{\mathrm{inc}}}{\sigma_{\mathrm{nd}}}$$

Use either the electromagnetic form factor

$$\mathcal{S}_{P}(ec{b}) = \int rac{\mathrm{d}^2ec{k}}{2\pi} rac{e^{iec{k}\cdotec{b}}}{1+|ec{k}|}$$

giving

$$A(b) = rac{\mu^2}{96\pi} (\mu b)^2 K_3(\mu b).$$

or an empirical double Gaussian double Gaussian

$$\rho_{\text{matter}}(r) = N_1 \exp\left(-\frac{r^2}{r_1^2}\right) + N_2 \exp\left(-\frac{r^2}{r_2^2}\right)$$

where  $r_1 \neq r_2$  gives "hot spots" and

$$A(b) = \int d^{3}dt \rho_{1,\text{matter}}^{\text{boosted}}(x,t) \rho_{2,\text{matter}}^{\text{boosted}}(x,t)$$



- Average activity at b proportional to A(b)
- Central collisions more active, broader than Poissonian
- Peripheral collisions normally give few if any collisions.

- ▲ 圖 ▶ - ▲ 国 ▶ - ▲ 国 ▶

## Multiparton Interaction Models

If the interactions occur independently obeys Poissonian statistics

$$P_n = \frac{\langle n \rangle^n}{n!} e^{-\langle n \rangle}$$

 However energy-momentum conservation tends to suppressed large numbers of parton scatterings.



#### Number of Interactions



Peter Richardson Intro to MC Event Generation L4: Underlying Event

<ロ> (四) (四) (注) (注) (注) (三)

# PYTHIA Model

• Don't use a strict cut-off in  $p_{\perp}$ 

$$\frac{\mathrm{d}\hat{\sigma}}{\mathrm{d}\boldsymbol{p}_{\perp}^{2}} \propto \frac{\alpha_{\mathcal{S}}^{2}(\boldsymbol{p}_{\perp}^{2})}{\boldsymbol{p}_{\perp}^{4}} \rightarrow \frac{\alpha_{\mathcal{S}}^{2}(\boldsymbol{p}_{\perp}^{2})}{(+\boldsymbol{p}\boldsymbol{p}_{\perp}^{2})^{2}}$$

- double Gaussian matter distribution,
- PDFs rescaled for momentum conservation
- Trace flavour content of remnant, including baryon number.
- Colour arrangement among outgoing partons
- Interactions ordered in decreasing  $p_{\perp}$ , and evolution interleaved with ISR

$$\frac{\mathrm{d}\mathcal{P}}{\mathrm{d}\boldsymbol{\rho}_{\perp}} = \left(\frac{\mathrm{d}\mathcal{P}_{\mathrm{MPI}}}{\mathrm{d}\boldsymbol{\rho}_{\perp}} + \frac{\mathrm{d}\mathcal{P}\mathrm{ISR}}{\mathrm{d}\boldsymbol{\rho}_{\perp}}\right) \exp\left(-\int_{\boldsymbol{\rho}_{\perp}}^{\boldsymbol{\rho}_{\perp,i-1}} \left[\frac{\mathrm{d}\mathcal{P}_{\mathrm{MPI}}}{\mathrm{d}\boldsymbol{\rho}_{\perp}} + \frac{\mathrm{d}\mathcal{P}\mathrm{ISR}}{\mathrm{d}\boldsymbol{\rho}_{\perp}}\right] \mathrm{d}\boldsymbol{\rho}_{\perp}'\right)$$

Includes rescattering

マロト イヨト イヨト

#### **PYTHIA Model**



・ロト ・回ト ・ヨト ・ヨト

3

#### Herwig++ Model

In terms of the eikonal function  $\chi(b, s)$ .

$$\begin{split} \sigma_{\text{tot}} &= 2 \int_0^\infty \mathrm{d}b^2 \left[ 1 - e^{-\chi(b,s)} \right] \quad \sigma_{\text{ela}} = \int_0^\infty \mathrm{d}b^2 \left| 1 - e^{-\chi(b,s)} \right|^2 \\ \sigma_{\text{inel}} &= \int_0^\infty \mathrm{d}b^2 \left[ 1 - e^{-2\chi(b,s)} \right] \end{split}$$

Take eikonal + partonic scattering seriously

$$\sigma_{\rm tot} = 2 \int {\rm d}^2 b \left( 1 - \exp\left[ -\frac{1}{2} A(b) \sigma_{
m inc} \right] 
ight)$$

 $\blacksquare$  Given the form of the matter distribution predict  $\sigma_{\rm inc}$ 

・ロン ・回と ・ヨン・

# Herwig++ Model

#### Too restrictive

$$\sigma_{\rm tot} = 2 \int d^2 b \left( 1 - \exp \frac{1}{2} \left[ A_{\rm soft}(b) \sigma_{\rm soft,inc} + A_{\rm hard}(b) \sigma_{\rm hard,inc} \right] \right)$$

- Gives two free parameters.
- Independent perturbative scattering above  $p_{\parallel}^{\min}$
- Gluon scattering below  $p_{\perp}^{\min}$  with  $\sigma_{\text{soft,inc}}$  and a Gaussian  $p_{\perp}$  distribution.
- $\frac{\mathrm{d}\sigma}{\mathrm{d}p_{\perp}}$  continuous at  $p_{\perp}^{\min}$ .
- Includes colour reconnection of the partons in clusters produced via MPI.

ヘロン 人間 とくほど くほど

# Colour Correlations

- Colour correlations can have a big influence on the final state.
- In particular ⟨p⊥⟩ vs n<sub>ch</sub> is very sensitive to the colour flow.
- Long string to remnants many charged particles
- Short strings less charged particles.



#### x-Dependent Matter Distributions

- Most models have a factorization of the x and b matter dependence.
- Corke & Sjöstrand JHEP 1105 (2011) 009 COnsider a Gaussian matter distribution with width

$$a(x) = a_0 \left( 1 + a_1 \ln \frac{1}{x} \right)$$



< Ξ

▲ □ > < □ >

## **Older Models**

#### UA5 Model (FORTRAN HERWIG)

- Distribute a (~negative binomial) number of clusters independently in rapidity and transverse momentum according to parametrisation/extrapolation of data;
- modify for overall energy/momentum/flavour conservation  $d\sigma/dp_{\perp}$ ;
- no minijets; correlations only by cluster decays.
- PHOJET
  - Use the optical theorem and pomerons
  - Unified framework of non-diffractive and diffractive interactions
  - Purely low- $p_{\perp}$ : only primordial  $k_{\perp}$  fluctuations
  - Usually simple Gaussian matter distribution



Peter Richardson Intro to MC Event Generation L4: Underlying Event

#### Measurements

- In principle all measurements at hadron collisions can be sensitive to the underlying event.
- There are three main types of measurement which are used to study, constrain, and fit the parameters of the models.
  - Measurements which are sensitive to a second hard scattering of a particular type.
  - 2 Measurements of particle numbers, p⊥, etc. in phase-space regions where we don't expect perturbative radiation in hard events.
  - 3 Measurements of min-bias events.

・ 回 と く ヨ と く ヨ と

#### **Double-Parton Scattering**

- Look at  $\gamma$ +jets events.
- One pure QCD scattering and one  $\gamma$ +jet.
- Define an effective cross section s.t.

$$\sigma_{ab} = \frac{\sigma_a \sigma_b}{\sigma_{eff}}$$



Peter Richardson Intro to MC Event Generation L4: Underlying Event

### **Double-Parton Scattering**



< 🗇 >

< 注) < 注

3



particles in the range  $p_T > 0.5$  GeV/c and  $|\eta| < 1$  relative to jet#1 (rotated to 270°) for 30  $\leq E_{T}(jet#1) < 70$  GeV for "Leading Jet" and "Back-to-Back" events. Intro to MC Event Generation L4: Underlying Event







Shows the  $\Delta\phi$  dependence of the "associated" charged particle densi  $p_T > 0.5 \text{ GeV/c}, |\eta| < 1 (not including PTmaxT) relative to PTmaxT ( <math>\frac{1}{2} + \frac{1}{2} +$ 

Shows the data on the  $\Delta \phi$  dependence of the "associated" charged particle density, dNchg/dnd $\phi$ ,  $p_T > 0.5$  GeV/c,  $|\eta| < 1$  (*not including PTmax*) relative to PTmax (rotated to 180°) for "min-bias" events with PTmax > 2.0 GeV/c.

 $\mathcal{O} \land \mathcal{O}$ 



Intro to MC Event Generation L4: Underlying Event

Peter Richardson

#### Underlying event measurements

- Classic approach is to define the event using a hard jet, or other particle, e.g. Z<sup>0</sup>.
- The define toward, away, transverse max and transverse min regions.
- The transverse min region is most sensitive to the underlying event, while transverse max can also be sensitive to perturbative radiation.



#### **CDF** Results Jets



Charged particle density and PTsum density for "leading jet" events versus E<sub>T</sub>(jet#1) for PYTHIA Tune A and HERWIG.

Peter Richardson

Intro to MC Event Generation L4: Underlying Event

イロト イポト イヨト イヨト

3

#### CDF Results Drell-Yan



Peter Richardson

Intro to MC Event Generation L4: Underlying Event

#### **CDF** Results



Peter Richardson Intro to MC Event Generation L4: Underlying Event

・ロト ・回ト ・ヨト ・ヨト

3

# First LHC Results



Peter Richardson Intro to MC Event Generation L4: Underlying Event

#### First LHC Results

#### Pythia Tune to ATLAS MinBias and Underlying Event

Used for the tune ATLAS UE data at 0.9 and 7 TeV ATLAS charged particle densities at 0.9 and 7 TeV CDF Run I underlying event analysis (leading jet) CDF Run I underlying event "Min-Max" analysis D0 Run II dijet angular correlations CDF Run II Min bias CDF Run I Z pT





 $p_{-} > 500 \text{ MeV}, |\eta| < 2.5, n_{-} \ge 6$ 

#### Result

This tune describes most of the MinBias and the UE data Significant improvement compared to pre-LHC tunes Biggest remaining deviation in  $d^2 N_{ch}$ These deviations could not be removed  $N_{ev} = 2\pi p_T d\eta dp_T$ Needs further investigations

Physics at LHC, DESY, June 9th, 2010 - ATLAS First Physics Results

Peter Richardson

#### Intro to MC Event Generation L4: Underlying Event

## First LHC Results

- Before the LHC start there was some worry that the models would completely fail.
- In reality in good agreement with the early data.
- Better agreement now after some tuning of the parameters.
- In both Herwig++ and PYTHIA this needs the p<sup>min</sup><sub>⊥</sub> parameter to be energy dependent.
- Older soft models don't describe the data.

- 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □

#### Average transverse $p_{\perp}$ vs $N_{\rm ch}$



э

#### Transverse $p_{\perp}$ density vs $p_{\perp}$



Peter Richardson Intro to MC Event Generation L4: Underlying Event

・ロト ・日下 ・ヨト

< ∃⇒

#### Transverse $N_{\rm ch}$ density vs $p_{\perp}$



Peter Richardson Intro to MC Event Generation L4: Underlying Event

( ) < </p>

# Charged Multiplicity



Peter Richardson Intro to MC Event Generation L4: Underlying Event

・ロト ・回 ・ ・ ヨト

< E

æ

## Diffraction

- In Regge theory scattering by resonance exchange, predates QCD.
- The Pomeron is the Regge trajectory of states with vacuum quantum numbers, in QCD glueballs.
- Gives the rates but not what the event look like.



#### Beam Remnants



- PDF after preceding MI/ISR activity:
  - **1** Squeeze range 0 < x < 1 into  $0 < x < 1 \sum_{i} x_i$
  - **2** Valence quarks reduce by the number already kicked out.
  - 3 Introduce companion quark  $q/\bar{q}$  to each kicked-out sea quark  $q/\bar{q}$ , with x based on assumed  $g \rightarrow q\bar{q}$  splitting
  - 4 Gluon and sea: rescale for total momentum conservation.
- Colour flow connects hard scattering to beam remnants which can have consequences.



- Underlying event is one of the least least understood aspects of event generation.e
- Modelled and only weakly constrained by existing data.
- Models based on MPI describe the data well with a number of refinements.

・ 同下 ・ ヨト ・ ヨト