

Recent software development for Optical Synchronization

(including Server for Laser synchronization based on down-conversion)

Tomasz Kozak DMCS, TUL

Advanced Techniques in LLRF control for XFEL - Collaboration Workshop Otwock-Świerk, 19-21 February 2013

XFEL Agenda

2

- Small introduction
- Software for Link Stabilization Units
- Software for VME DAC board
- Software for SIS8300+DwC Locking Scheme
- Future projects

FEL Short introduction – Where software is needed?

European

Additionally 26A Laboratory:

- used as Test Station for new development
- Two test links available
- Setup with VME DAC board

Courtesy: S.Schulz

FEL Short introduction – Where software is needed?

REGAE facility

European

REGAE synchronization highlights:

- 83MHz Ti:Sapphire Laser user as a PIL and Pump-Prope Laser (later)
- New Phase Detection at Intermediate Frequency Synchronization Scheme for RF-to-Laser Synchronization

XFEL Link Lock Middle Layer Server

Aims for Server development

- Make links simple in use (one panel one button features)
- Make link robust and decrese downtime (full automatization and exception handling)

Server features

- Jitter and long time drift calculations
- Locking the link using optical cross-correlator signal
- 'Intelligent' coarse tuning using stepper motors
- Fast and slow calibration of the cross-correlator coefficient
- Automatic search for the cross-correlator signal
- Control and monitoring of the laser diode driver front-end server
- Calculation of piezo-driver coefficient
- Advanced expecption handling and recovery

Server architecture

- Middle layer server can be reused with MTCA
- Multithread software separated threads for all long time routines
- Dedicated C++ classes for LLD supervision and motorized delay line (step motor)
- Advanced logging scheme 5 logs priorities

XFEL Link Lock Middle Layer Server

Link Lock Middle Layer Server main panel

XFEL Link Lock Middle Layer Server

Link Lock Middle Layer Server advanced panel

European

XFEL Server for VME DAC card – DAC8 Server

Aim for development:

- Have a person who is able to maintaine the board
- Fix firmware problems with software pathes
- Add additional features (e.g. phase scanner)

Server features:

- event-driven architecture of the server
- two independent sets of channels which can operate in different modes and with different settings
- phase scanner feature
- additional mode of operation dedicated for faster phase scanning
- improved memory writes mechanism
- DAC signal disturbance free recovery from server restart or crate crash/restart mechanism added

XFEL Server for SIS8300+DwC Locking Scheme

New phase locking scheme based on downcoversion is applied in:

- REGAE
- Photo Injector Laser 3 at FLASH (ultra short pulse laser)

10

XFEL Server for SIS8300+DwC Locking Scheme

REGAE set-up

Controller in the FPGA:

- Developed by Uros with SysGen tool
- The same structure for both applications
- Differences in the ADC sampling rates

XFEL Server for SIS8300+DwC Locking Scheme

Server features

- Access to all registers with dedicated panels for application and board registers sets
- Auto-loading of defaults registers values after server restart (eg. after crate crash)
- 'Inteligence' coarse tuning with step motor/temperature
- Monitoring of DAC signal and lock lost detection in order to protect piezo driver
- Automatic 'one-button click' laser locking routine

Server architecture

- Integrated Middle layer and Front-End server functionalities (should it stay this way ??)
- Multithread software separated threads for all long time routines (e.g. Coarse tuning, laser locking)
- Event driven architecture

ASSOCIATION

XFEL Future development

Slow link lock server

- Small bug fixing pending
- Adding phase detector support
- Addjusting server for new front-end server (DAMC2 based one)
- More inteligent scanning for finding OXC signal

SIS8300+DwC Locking Scheme Server

- Debugging DMA read error (only PIL3 location)
- Adding notch filter parameters calculation
- Adding 'more intelligent' coarse tuning routines
- A lot of minor adjustments units, panel etc.
- System identification for finding optimal PI settings

XFEL Future development

Future project:

•Laser Pulse Amplitude Stabilization with Pockel cell

•Fast feedback on arrival time

Thank you for your attention

20.02.2013, Świerk - Tomasz Kozak, DMCS, TUL

Headline

- first level
 - second level
 - third level

Headline

Texttext texttext texttext texttext texttext texttext

Keyword	 Keyword Keyword 	keywordkeyword
Result Headlineresult textresult text	Result headline Result text, result text, result text	 Result headline result text result text result text

