
PCIe improvement

Jaroslaw Szewinski

National Centre for Nuclear Research, Otwock-Świerk, Poland

Świerk, 2013

J. Szewinski (NCBJ) PCIe improvement Świerk 2013 1 / 20



Agenda

1 Introduction

2 Structure VHDL implementation

3 Software implementation

J. Szewinski (NCBJ) PCIe improvement Świerk 2013 2 / 20



Status

Existing PCIe core written by Wojtek Jalmuzna needs upgrade,
because the code structure is is not clear
New PCIe interface is made to be as much as possible similar to
the old one from the user point of view.
New core seems to be ready, it need only testing and deployment
in particular projects (whenever we will have to do it).
All major projects still use old PCIe cores

J. Szewinski (NCBJ) PCIe improvement Świerk 2013 3 / 20



Netlists

To improve the compilation time, Wojtek has provided the PCIe
core as netlist. This is fine, except that there are 2 different PCIe
netlist (one in SIS project, one in uTC project).

The problem: we have no (or I haven’t found yet) source code for
the SIS PCIe core netlist
Adopting new core to the SIS project will be more difficult, and will
take more time.

General remark: If you want to improve the project by using
precompiled netlist - please, do it wisely and think twice.

J. Szewinski (NCBJ) PCIe improvement Świerk 2013 4 / 20



Netlists

To improve the compilation time, Wojtek has provided the PCIe
core as netlist. This is fine, except that there are 2 different PCIe
netlist (one in SIS project, one in uTC project).
The problem: we have no (or I haven’t found yet) source code for
the SIS PCIe core netlist
Adopting new core to the SIS project will be more difficult, and will
take more time.

General remark: If you want to improve the project by using
precompiled netlist - please, do it wisely and think twice.

J. Szewinski (NCBJ) PCIe improvement Świerk 2013 4 / 20



Netlists

To improve the compilation time, Wojtek has provided the PCIe
core as netlist. This is fine, except that there are 2 different PCIe
netlist (one in SIS project, one in uTC project).
The problem: we have no (or I haven’t found yet) source code for
the SIS PCIe core netlist
Adopting new core to the SIS project will be more difficult, and will
take more time.

General remark: If you want to improve the project by using
precompiled netlist - please, do it wisely and think twice.

J. Szewinski (NCBJ) PCIe improvement Świerk 2013 4 / 20



PCIe BAR-to-II bus converter

J. Szewinski (NCBJ) PCIe improvement Świerk 2013 5 / 20



PCIe Main Component

J. Szewinski (NCBJ) PCIe improvement Świerk 2013 6 / 20



PCIe Rx demultiplexer

J. Szewinski (NCBJ) PCIe improvement Świerk 2013 7 / 20



PCIe Tx multiplexer

J. Szewinski (NCBJ) PCIe improvement Świerk 2013 8 / 20



DMA burst

J. Szewinski (NCBJ) PCIe improvement Świerk 2013 9 / 20



Standard PCIe Interface

J. Szewinski (NCBJ) PCIe improvement Świerk 2013 10 / 20



DMA transfer rules

Max payload in one TLP (PCIe frame) is 32 DWORDs (32-bit
values)
New frame is transmitted whenever there is at least 32 values in
the Data FIFO
If last chunk of data is less than 32 values, the dma_flush forces
sending frame with payload size equal the actual content of the
Data FIFO
Core has internal address counter of for address in CPU memory
Each transaction increments CPU address by amount of sent data
dma_start moves the CPU address counter back to provided
CPU base address

J. Szewinski (NCBJ) PCIe improvement Świerk 2013 11 / 20



Using DMA (1)

When new pulse comes:
1 Generate positive pulse on dma_start to roll-back the CPU

address pointer (one clock cycle is enough)
2 Push all data to Data FIFO using std. FIFO interface (data, wren,

full)
3 After placing all data in Data FIFO, pulse dma_flush, to ensure

that incomplete (<32 DWORDS) will be send.
4 If overall amount of data is integer multiplication of 32,
dma_flush does not has to be touched.

J. Szewinski (NCBJ) PCIe improvement Świerk 2013 12 / 20



Using DMA (2)

When new pulse comes, and You are in hurry :-) :
1 Start placing data in Data FIFO immediately
2 Generate positive pulse on dma_start, not later when 32

DWORDs are placed in FIFO
3 After placing all data in Data FIFO, pulse dma_flush (if needed)

J. Szewinski (NCBJ) PCIe improvement Świerk 2013 13 / 20



Traditional DMA transfer

In the separate address space (BAR), there are 4 registers:
DMA_STATUS - used to check if last interrupt was a “DMA finished”
acknowledge
DMA_CPU_ADDR - absolute destination1 address in the CPU
memory
DMA_DEV_ADDR - relative source1 offset in FPGA address space
(i.e. internal or DDR2 memory)
DMA_SIZE - amount of data to be transferred

1 - We assume write-only to CPU DMA transfers only

Procedure:
1 User has to set from CPU both CPU and FPGA addresses
2 Transfer is triggered when DMA_STATUS is written
3 DMA_STATUS may be checked during next interrupt, before

performing next access
4 Repeat for each ∼ 1MB data chunk (limitation of dynamic DMA

mem. allocation)

J. Szewinski (NCBJ) PCIe improvement Świerk 2013 14 / 20



Traditional DMA transfer

In the separate address space (BAR), there are 4 registers:
DMA_STATUS - used to check if last interrupt was a “DMA finished”
acknowledge
DMA_CPU_ADDR - absolute destination1 address in the CPU
memory
DMA_DEV_ADDR - relative source1 offset in FPGA address space
(i.e. internal or DDR2 memory)
DMA_SIZE - amount of data to be transferred

1 - We assume write-only to CPU DMA transfers only
Procedure:

1 User has to set from CPU both CPU and FPGA addresses
2 Transfer is triggered when DMA_STATUS is written
3 DMA_STATUS may be checked during next interrupt, before

performing next access

4 Repeat for each ∼ 1MB data chunk (limitation of dynamic DMA
mem. allocation)

J. Szewinski (NCBJ) PCIe improvement Świerk 2013 14 / 20



Traditional DMA transfer

In the separate address space (BAR), there are 4 registers:
DMA_STATUS - used to check if last interrupt was a “DMA finished”
acknowledge
DMA_CPU_ADDR - absolute destination1 address in the CPU
memory
DMA_DEV_ADDR - relative source1 offset in FPGA address space
(i.e. internal or DDR2 memory)
DMA_SIZE - amount of data to be transferred

1 - We assume write-only to CPU DMA transfers only
Procedure:

1 User has to set from CPU both CPU and FPGA addresses
2 Transfer is triggered when DMA_STATUS is written
3 DMA_STATUS may be checked during next interrupt, before

performing next access
4 Repeat for each ∼ 1MB data chunk (limitation of dynamic DMA

mem. allocation)
J. Szewinski (NCBJ) PCIe improvement Świerk 2013 14 / 20



Standard PCIe Interface (again)

J. Szewinski (NCBJ) PCIe improvement Świerk 2013 15 / 20



DMA remarks

DMA may be extremely dangerous, because due to achieve
maximal performance it allows unrestricted access to raw physical
memory (operating system pages, newly typed-in passwords, etc.
- Please google for “DMA Attack”)
Accidental DMA access may crash the OS, or make or other
unpredicted behaviour.

J. Szewinski (NCBJ) PCIe improvement Świerk 2013 16 / 20



Traditional DMA transfer from Linux kernel point of view

Allocate DMA capable (continuous physical) memory - (obtain
CPU mem. addr)
Set BAR2 registers (CPU_ADDR, FPGA_ADDR, MEM_SIZE)
Stay idle, and wait for interrupt
On interrupt, check DMA_STATUS, if the DMA is finished
Release DMA buffer
Repeat for each ∼ 1MB chunk

J. Szewinski (NCBJ) PCIe improvement Świerk 2013 17 / 20



New proposed approach for DMA transfers

Initial:
Allocate DMA capable, continuous physical memory

during
boot-time
Tell the FPGA the base address of reserved physical memory
On hardware interrupt (end of RF pulse), FPGA will start DMA
writes by it self, will transfer all data, and generate interrupt

User application and driver:
Do a Memory mapping of reserved physical mem.
Wait for interrupt
Take a pointer, and read memory ! (your data is already there)

J. Szewinski (NCBJ) PCIe improvement Świerk 2013 18 / 20



New proposed approach for DMA transfers

Initial:
Allocate DMA capable, continuous physical memory during
boot-time

Tell the FPGA the base address of reserved physical memory
On hardware interrupt (end of RF pulse), FPGA will start DMA
writes by it self, will transfer all data, and generate interrupt

User application and driver:
Do a Memory mapping of reserved physical mem.
Wait for interrupt
Take a pointer, and read memory ! (your data is already there)

J. Szewinski (NCBJ) PCIe improvement Świerk 2013 18 / 20



New proposed approach for DMA transfers

Initial:
Allocate DMA capable, continuous physical memory during
boot-time
Tell the FPGA the base address of reserved physical memory
On hardware interrupt (end of RF pulse), FPGA will start DMA
writes by it self, will transfer all data, and generate interrupt

User application and driver:
Do a Memory mapping of reserved physical mem.
Wait for interrupt
Take a pointer, and read memory ! (your data is already there)

J. Szewinski (NCBJ) PCIe improvement Świerk 2013 18 / 20



New proposed approach for DMA transfers

Initial:
Allocate DMA capable, continuous physical memory during
boot-time
Tell the FPGA the base address of reserved physical memory
On hardware interrupt (end of RF pulse), FPGA will start DMA
writes by it self, will transfer all data, and generate interrupt

User application and driver:
Do a Memory mapping of reserved physical mem.
Wait for interrupt
Take a pointer, and read memory ! (your data is already there)

J. Szewinski (NCBJ) PCIe improvement Świerk 2013 18 / 20



Advantages of the new approach

No 1MB CPU buffer limit
No allocate/release of the memory
Transfer automated on the FPGA side (no waiting for several
requests)
Software waits for 1 interrupt (no waiting for requests completions)
Several applications can read the same reserved physical
memory (shared memory, shared not only between processes on
CPU, but even with the FPGA itself :-)
The timing module and it’s server does not have to be used at all -
our driver can generate SIGUSR1 for us, on the interrupt
generated by our board from the physical trigger signal (maybe
more constant latency could be achieved).

J. Szewinski (NCBJ) PCIe improvement Świerk 2013 19 / 20



The end

Thank You

J. Szewinski (NCBJ) PCIe improvement Świerk 2013 20 / 20


	Introduction
	Structure VHDL implementation
	Software implementation

