GoSam Beyond

Gavin Cullen, DESY Zeuthen

In collaboration with: N. Greiner, G. Heinrich, P. Mastrolia, E. Mirabella, H. Van Deurzen, G. Luisoni, J.F. von Soden-Fraunhofen, T. Peraro,
J. Reichel, J. Schlenk, G. Ossola, F. Tramontano

MC4BSM: 19th April 2013

Outline

- Why NLO? Why automatic?
- Introduce GoSam
- Applications of GoSam in NLO calculations in (B)SM

Problem

We want to go from point A to point B while minimizing work:

- $\mathcal{L} \rightarrow$

Problem

We want to go from point A to point B while minimizing work:

- \mathcal{L}

Problem

We want to go from point A to point B while minimizing work:

[Old Approach] : all good textbooks
[Modern Approach] : FeynRules [Fuks, Duhr, Degrande, Christensen] , . .

Problem

We want to go from point A to point B while minimizing work:

- \mathcal{L}
- \rightarrow Feynman rules
- \rightarrow Leading Order

[Old Approach] : find a diploma student [Modern Approach] : MadGraph/MadEvent, Alpgen, Amegic, Comix, Helac, Whizhard, ...

Problem

We want to go from point A to point B while minimizing work:

- \mathcal{L}
\rightarrow Feynman rules
- \rightarrow Next to Leading Order

[Old Approach] : find a PhD student (and wait 2-3 years) [Modern Approach] : This talk

Problem

We want to go from point A to point B while minimizing work:

- \mathcal{L}
$\rightarrow \rightarrow$ Feynman rules
- \rightarrow (Next to Leading Order)
- \rightarrow parton shower (+matching)

[Old Approach] : all good textbooks
[Modern Approach] : Sherpa, Alpgen, Whizard (Matrix element generators); Pythia, Herwig (parton shower + hadronisation), \cdots

Problem

We want to go from point A to point B while minimizing work:

- \mathcal{L}
- \rightarrow Feynman rules
- \rightarrow Next to Leading Order
- \rightarrow parton shower (+matching)
- \rightarrow full detector simulation

[OId Approach] : find an experimentalist
[Modern Approach] : find an experimentalist

Why NLO?

Common answers :

- scale uncertainty reduced (more precise)
- better PDF fits (more precise)
- jet start to have structure (more realistic)
- shape of distribution can change (more serious)

Why Automatic?

Common answers:

- human error is reduced (less frustrating)
- human time of computation is reduced (more efficient)
- process independent (more flexibility)
- confidence in results (more sleep)
- tools can be used by "non-experts" (open to debate)

What goes into an NLO calculation?

- a NLO calculation is a complicated project
- Exploit modular structure
- Tree level
- Virtual corrections
- Real emissions
- Subtraction terms for soft and collinear singularities

What goes into an NLO calculation?

- a NLO calculation is a complicated project
- Exploit modular structure
- Tree level
- Virtual corrections
- Real emissions
- Subtraction terms for soft and collinear singularities

What goes into an NLO calculation?

- a NLO calculation is a complicated project
- Exploit modular structure
- Tree level
- Virtual corrections
- Real emissions
- Subtraction terms for soft and collinear singularities

What goes into an NLO calculation?

- a NLO calculation is a complicated project
- Exploit modular structure
- Tree level
- Virtual corrections
- Real emissions
- Subtraction terms for soft and collinear singularities

What goes into an NLO calculation?

- a NLO calculation is a complicated project
- Exploit modular structure
- Tree level
- Virtual corrections
- Real emissions
- Subtraction terms for soft and collinear singularities

What goes into an NLO calculation?

- a NLO calculation is a complicated project
- Exploit modular structure
- Tree level
- Virtual corrections
- Real emissions
- Subtraction terms for soft and collinear singularities

Automated NLO tools

- Hard coded processes:
- POWHEG-Box [Alioli, Nason, Oleari, Re et al]
- MCFM/Rocket [Campbell, Ellis, Williams, Melnikov, Zanderighi et al]
- VBFNLO [Zeppenfeld et al] , . . .

Automated NLO tools

Automation of subtraction terms for IR divergent
 real radiation

- MadDipole [Frederix, Greiner, Gehrmann]
- Dipole subtraction in Sherpa [Gleisberg, Krauss]
- TevJet [Seymour, Tevin]
- AutoDipole [Hasegawa, Moch, Uwer]
- Helac-Phegas [Czakon, Papadopoulos, Worek]
- MadFKS [Freederix, Frixione, Maltoni, Stelzer]

Automated NLO tools

And at one-loop

- FeynArts/FormCalc/LoopTools [T. Hahn et al]
- MadGolem [wigmore et al]
- Grace [Fujimoto et al]

- BlackHat [Bern, Dixon, FebresCordero, Hoeche, Ita, Kosower, Maitre, Ozeren]
- Helac-NLO [Bevilacqua, Czakon, van Hameren, Papadopoulos, Pittau, Worek]
- MadLoop/ aMC@NLO
[Hirschi,Frederix,Frixione, Garzelli,Maltoni,Pittau] uses CutTools [Ossola, Papadopoulos, Pittau] and MadFKS
- NJet [Bagger, Biedermann, Uwer, Yundin]
- OpenLoops [Pozzorini, Maierhöfer, Cascioli]
- Recola [Actis, Denner, Hofer, Scharf, Uccirati]
- GoSam

GoSam

GoSam is a joining of two collaborations Golem and Samurai:

- Golem: General One Loop Evaluator of Matrix Elements
- Samurai : Scattering Amplitudes from Unitarity based Reduction At Integrand level
- Now with added PhD/Diploma Students!

GoSam

Aim: to have a general tool that can compute the one-loop amplitude for any process in and beyond the SM.

- Public and open source: download at http://projects.hepforge.org/gosam/ [arXiv: 1111.6534 [hep-ph]]
- GoSam is a Python program that automatically generates Fortran 95 library for the virtual piece of a NLO calculation

GoSam current status

- Pheno Projects
- SM:
- $W^{+} W^{-}+2$ jets [Greiner, Heinrich, Mastrolia, Ossola, Reiter, Tramontano '12]
- $b \bar{b} b \bar{b}$ production [Binoth, Greiner, Guffanti, Guillet, Reiter, Reuter '10, '11]
- $H+2$ jets [van Deurzen, Greiner, Luisoni, Mastrolia, Mirabella, Ossola, Peraro, von Soden-Fraunhofen, Tramontano '13]
- H+3 gluon fusion [van Deurzen, Greiner, Luisoni, Mastrolia, Mirabella, Ossola, Schoenherr, Tramontano, work in progress]
- $\gamma \gamma+j$ [T. Gehrmann, Greiner, Heinrich '13]
- BSM:
- $\chi_{1}^{0} \chi_{1}^{0}+1$ jet [GC, Greiner, Heinrich, '12]
- Graviton +1 jet (ADD model) [Greiner, Heinrich, Reichel, von Soden-Fraunhofen (in preparation)]
- Code Development
- BLHA interface to Sherpa, POWHEG
- UFO interface for BSM models
- Higher rank integrals supported
- New optimisation strategy

What goes into an NLO calculation?

- a NLO calculation is a complicated project
- Exploit modular structure
- Tree level
- Virtual corrections
- Real emissions
- Subtraction terms for soft and collinear singularities
- GoSam focuses on the virtual piece, the matching to the other pieces is through the BLHA interface

Binoth Les Houches Accord (2009) [Les Houches 2009]

Initialisation Phase

Runtime Phase

- Update to basic accord to come this year

GoSam Pheno Projects

- GoSam + MadGraph4
- $W^{+} W^{-}+2$ jets
- $\chi_{\underline{1}}^{0} \chi_{\underline{1}}^{0}+1$ jet
- $b \bar{b} b \bar{b}$ production
- GoSam + POWHEG [Luisoni, Nason, Oleari, Tramontano] Working interface (to BLHA Standard), [coming soon]
- GoSam + Sherpa automated interface with Sherpa option -enable-Ihole
- $H+2$ jets
- $H+3$ jets [in progress]
- $\gamma \gamma+j$
- Graviton +1 jet (ADD model) [in progress]

GoSam: Quick Tutorial

Process: $u \bar{d} \rightarrow W^{+} W^{+} \bar{c} s \rightarrow e^{+} \nu_{e} \mu^{+} \nu_{\mu} \bar{c} s$

- Prepare input card
in=u,d~
out=c~,s,e+,ne,mu+,nmu
model=smdiag
order=QCD,2,4
zero=mU,mD,mC,mS,mB,me,mmu,wB
one=gs,e
helicities=-++-+-+-
extensions=dred,samurai
- and run..
gosam.py process.in

GoSam: Quick Tutorial

Process: $u \bar{d} \rightarrow W^{+} W^{+} \bar{c} s \rightarrow e^{+} \nu_{e} \mu^{+} \nu_{\mu} \bar{c} s$

- Draw diagrams make doc
- Write source files make source
- Compile source files make compile

GoSam: Quick Tutorial

Process: $u \bar{d} \rightarrow W^{+} W^{+} \bar{c} s \rightarrow e^{+} \nu_{e} \mu^{+} \nu_{\mu} \bar{c} s$

- Draw diagrams make doc
- Write source files make source
- Compile source files make compile

```
Form is processing loop diagram 1 @ Helicity 0
    1.36 sec out of 1.36 sec
Haggies is processing abbreviations for loop diagram 1
Form is processing loop diagram 2 @ Helicity 0
    1.54 sec out of }1.55\textrm{sec
Haggies is processing abbreviations for loop diagram 2
Form is processing loop diagram 3 @ Helicity 0
    0.84 sec out of 0.85 sec
Haggies is processing abbreviations for loop diagram 3
Form is processing loop diagram 4 @ Helicity 0
    0.92 sec out of 0.93 sec
Haggies is processing abbreviations for loop diagram 4
Form is processing loop diagram 5 @ Helicity 0
    0.98 sec out of 0.99 sec
```


GoSam: Quick Tutorial

Process: $u \bar{d} \rightarrow W^{+} W^{+} \bar{c} s \rightarrow e^{+} \nu_{e} \mu^{+} \nu_{\mu} \bar{c} s$

- Draw diagrams make doc
- Write source files make source
- Compile source files make compile

```
Form is processing loop diagram 1 @ Helicity 0
    1.36 sec out of 1.36 sec
Haggies is processing abbreviations for loop diagram 1
Form is processing loop diagram 2 @ Helicity 0
    1.54 sec out of }1.55\textrm{sec
Haggies is processing abbreviations for loop diagram 2
Form is processing loop diagram 3 @ Helicity 0
    0.84 sec out of 0.85 sec
Haggies is processing abbreviations for loop diagram 3
Form is processing loop diagram 4 @ Helicity 0
    0.92 sec out of 0.93 sec
Haggies is processing abbreviations for loop diagram 4
Form is processing loop diagram 5 @ Helicity 0
    0.98 sec out of 0.99 sec
```


GoSam: Quick Tutorial

Process: $u \bar{d} \rightarrow W^{+} W^{+} \bar{c} s \rightarrow e^{+} \nu_{e} \mu^{+} \nu_{\mu} \bar{c} s$

- We compare to MMRZ
[Melia, Melnikov, Rontsch, Zanderighi (1104.2327)]

LO: $\quad 1.143226406875312 \mathrm{E}-017$
NLO/LO, finite part: 23.3596454824712
NLO/LO, single pole: 13.6255429253600
NLO/LO double pole: -5.33333333333331
cpu time (secs) : 5.299200000000000E-002

NLO/LO	GoSam	MMRZ
$1 / \epsilon^{2}$	-5.33333333	-5.33333
$1 / \epsilon$	13.62554293	13.62554
finite	23.35964548	23.35965

GoSam tests

Processes tested at release:

- $u \bar{d} \rightarrow W^{+} s \bar{s} \rightarrow e^{+} \nu_{e} s \bar{s}$
- $u \bar{d} \rightarrow W^{+} g g \rightarrow e^{+} \nu_{e} g g$
- $d \bar{d} \rightarrow Z g g \rightarrow e^{+} e^{-} g g$
- $u \bar{d} \rightarrow W^{+} g g \rightarrow e^{+} \nu_{e} b \bar{b}$ (massive b)
- $u \bar{d} \rightarrow W^{+} g \rightarrow e^{+} \nu_{e} g$ (EW)
- $e^{+} e^{-} \rightarrow Z \rightarrow d \bar{d} g$
- $\gamma \gamma \rightarrow \gamma \gamma \gamma \gamma$
- $q \bar{q} \rightarrow b \bar{b} b \bar{b}$
- $g g \rightarrow b \bar{b} b \bar{b}$
- $u \bar{d} \rightarrow W^{+} W^{+} s \bar{c} \rightarrow e^{+} \nu_{e} \mu^{+} \nu_{\mu} s \bar{c}$
- $u \bar{u} \rightarrow W^{+} W^{+} c \bar{c} \rightarrow e^{-} \bar{\nu}_{e} \mu^{+} \nu_{\mu} c \bar{c}$
- $u \bar{d} \rightarrow W^{+} W^{-} s \bar{c} \rightarrow e^{-} \bar{\nu}_{e} \mu^{+} \nu_{\mu} \bar{s} c$
- Plus many $2 \rightarrow 2$ processes

GoSam tests

Updated table:

$\gamma \gamma \rightarrow \gamma \gamma$ (W and fermion loop)	$p p \rightarrow t \bar{t} H$
$\gamma \gamma \rightarrow \gamma \gamma \gamma \gamma$ (fermion loop)	$p p \rightarrow t \bar{t} Z$
$e^{+} e^{-} \rightarrow e^{+} e^{-} \gamma$ (QED)	$p p \rightarrow t \bar{t} j$
$p p \rightarrow W^{ \pm} j$ (QCD corr.)	$p p \rightarrow W^{+} W^{+} j j$
$p p \rightarrow W^{ \pm} j$ (EW corr.)	$p p \rightarrow W^{+} W^{-} j j$
$p p \rightarrow W^{ \pm} t$	$p p \rightarrow W^{+} W^{-} b \bar{b}$
$p p \rightarrow W^{ \pm} j j$	$p p \rightarrow b \bar{b} b \bar{b}$
$p p \rightarrow W^{ \pm} b \bar{b}$ (massive b's)	$p p \rightarrow t \bar{t} b \bar{b}$
$p p \rightarrow W^{+} j j j$	$p p \rightarrow H j j$
$p p \rightarrow \tilde{\chi}_{1}^{0} \tilde{\chi}_{1}^{0}$	$p p \rightarrow H j j$
$p p \rightarrow \tilde{\chi}_{1}^{0} \tilde{\chi}_{1}^{0} j$	$p p \rightarrow \gamma \gamma j$

Table: Examples of one-loop amplitudes computed with GoSam.

GoSam: An Overview

- Diagrams drawn by QGRAF [Nogueira] (one can provide their own model files in the UFO format [Duhret al])
- Algebraic generation of D-dimensional integrands based on Feynman diagrams using the Spinney [GC et a] library (written in Form [Vermaseren])
- Options for reduction:
- Samurai: D-Dimensional integrand reduction [Ossola Papadopoulos,

Pittau, Ellis, Giele, Kunszt and Melnikov, Mastrolia, Reiter, Tramontano]

- "traditional" tensor reduction using golem95 [Binoth et al]
- tensorial reduction at the integrand level [Heinrich, Ossola, Reiter, Tramontano]
- Different integral libraries available at runtime: Golem95C , OneLoop [A. van Hameren]
- Output is an optimized fortran code (currently using Haggies [Reiter]: soon using new features of Form [Vermaseren et all $\overline{)}$

GoSam: An Overview

- Diagrams drawn by QGRAF [Nogueira] (one can provide their own model files in the UFO format [Duhr et al])
- Algebraic generation of D-dimensional integrands based on Feynman diagrams using the Spinney [GC et a] library (written in Form [Vermaseren])
- Options for reduction:
- Samurai: D-Dimensional integrand reduction [Ossola Papadopoulos,

Pittau, Ellis, Giele, Kunszt and Melnikov, Mastrolia, Reiter, Tramontano]

- "traditional" tensor reduction using golem95 [Binoth et al]
- tensorial reduction at the integrand level [Heinrich, Ossola, Reiter, Tramontano]
- Different integral libraries available at runtime: Golem95C , OneLoop [A. van Hameren]
- Output is an optimized fortran code (currently using Haggies [Reiter]: soon using new features of Form [Vermaseren et al] $]$

GoSam: An Overview

- Diagrams drawn by QGRAF [Nogueira] (one can provide their own model files in the UFO format [Duhr etal])
- Algebraic generation of D-dimensional integrands based on Feynman diagrams using the Spinney [GC et al] library (written in Form [Vermaseren])
- Options for reduction:
- Samurai: D-Dimensional integrand reduction [Ossola Papadopoulos,

Pittau, Ellis, Giele, Kunsta and Melnikov, Mastrolia, Reiter, Tramontano]

- "traditional" tensor reduction using golem95 [Binoth et al]
- tensorial reduction at the integrand level [Heinich, Ossola, Reiter. Tramontano]
- Different integral libraries available at runtime: Golem95C , OneLoop [A. van Hameren]
- Output is an optimized fortran code (currently using Haggies [Reiter]: soon using new features of Form [Vermaseren et al])

GoSam: An Overview

- Diagrams drawn by QGRAF [Nogueira] (one can provide their own model files in the UFO format [Duhr etal])
- Algebraic generation of D-dimensional integrands based on Feynman diagrams using the Spinney [GC et al] library (written in Form [Vermaseren])
- Options for reduction:
- Samurai: D-Dimensional integrand reduction [Ossola Papadopoulos,

Pittau, Ellis, Giele, Kunszt and Melnikov, Mastrolia, Reiter, Tramontano]

- "traditional" tensor reduction using golem95 [Binoth et al]
- tensorial reduction at the integrand level [Heinrich, Ossola, Reiter, Tramontano]
- Different integral libraries available at runtime: Golem95C , OneLoop [A. van Hameren]
- Output is an optimized fortran code (currently using Haggies Reamit: soon using new features of Form Nemememi)

GoSam: An Overview

- Diagrams drawn by QGRAF [Nogueira] (one can provide their own model files in the UFO format [Duhr etal])
- Algebraic generation of D-dimensional integrands based on Feynman diagrams using the Spinney [GC et al] library (written in Form [Vermaseren])
- Options for reduction:
- Samurai: D-Dimensional integrand reduction [Ossola Papadopoulos,

Pittau, Ellis, Giele, Kunszt and Melnikov, Mastrolia, Reiter, Tramontano]

- "traditional" tensor reduction using golem95 [Binoth et al]
- tensorial reduction at the integrand level [Heinrich, Ossola, Reiter, Tramontano]
- Different integral libraries available at runtime: Golem95C , OneLoop [A. van Hameren]
- Output is an optimized fortran code (currently using Haggies [Reiter]: soon using new features of Form [Vermaseren et al])

GoSam goes Beyond (The Standard Model)

- We are interested in extending GoSam for Processes Beyond the Standard Model
- BSM Pheno projects:
- $\chi_{1}^{0} \chi_{1}^{0}+1$ jet [GC, Greiner, Heinrich]
- Graviton + 1 jet (ADD model) [Greiner, Heinrich, Reichel, von Soden-Fraunhofen (in preparation)]
- BSM friendly code features:
- GoSam can import model files in UFO [Degrande, Duhr, Fuks, Grellscheid, Mattelaer, Reiter] model format or Lanhep [Semenov et al] format
- Majorana fermions
- massive and complex loop integrals
- effective vertices, higher rank tensor (development in Samurai and golem95), spin 2 particles

MonoJet Searches in SUSY

- A compressed SUSY spectrum can dramatically reduce SUSY search limits [Dreiner,Krämer,Tattersall]
- ATLAS relies on the following to untangle SUSY from the background: a hard jet, and a decent amount of missing energy
- But a compressed spectrum can lead to soft jets and so could be "hidden" at LHC
- We explore this scenario for the process $p p \rightarrow \chi_{1}^{0} \chi_{1}^{0}+j$

SUSY @ LHC

SUSY @ LHC : strong constraints on squark masses are weakened in "compressed" scenarios
For example: p19MSSM1A

SUSY Parameters	
$M_{\tilde{\chi}_{1}^{0}}=299.5$	$\Gamma_{\tilde{\chi}_{1}^{0}}=0$
$M_{\tilde{\tilde{L}}}=415.9$	$\Gamma_{\tilde{g}}=4.801$
$M_{\tilde{u}_{L}}=339.8$	$\Gamma_{\tilde{u}_{L}}=0.002562$
$M_{\tilde{u}_{R}}=396.1$	$\Gamma_{\tilde{u}_{R}}=0.1696$
$M_{\tilde{d}_{L}}=348.3$	$\Gamma_{\tilde{d}_{L}}=0.003556$
$M_{\tilde{d}_{R}}=392.5$	$\Gamma_{\tilde{d}_{R}}=0.04004$
$M_{\tilde{b}_{L}}=2518.0$	$\Gamma_{\tilde{b}_{L}}=158.1$
$M_{\tilde{b}_{R}}=2541.8$	$\Gamma_{\tilde{b}_{R}}=161.0$
$M_{\tilde{t}_{L}}=2403.7$	$\Gamma_{\tilde{t}_{L}}=148.5$
$M_{\tilde{t}_{R}}=2668.6$	$\Gamma_{\tilde{t}_{R}}=182.9$

At this point we get a signal that can be seen at LHC and is consistent with Higgs measurement

Neutralino Pair plus One Jet

Calculational setup:

- Virtual piece: GoSam
- Real piece: MadGraph
- Subtraction terms: MadDipole
- Phase space integration: MadEvent

Feynman rules provided by FeynRules in UFO format
Parameter point calculated in Softsusy [Allanach] and Susyhit [Djouadi;
Mühlleitner, Spira]

Neutralino Pair plus One Jet

> Calculational setup:
> - Virtual piece : GoSam
> - Real piece: MadGraph
> - Subtraction terms: MadDipole
> - Phase space integration: MadEvent

Feynman rules provided by FeynRules in UFO format
Parameter point calculated in Softsusy [Allanach] and Susyhit [Djouadi;
Mühlleitner, Spira]

Neutralino Pair plus One Jet

Calculational setup:

- Virtual piece: GoSam
- Real piece: MadGraph
- Subtraction terms: MadDipole
- Phase space integration: MadEvent

Feynman rules provided by FeynRules in UFO format
Parameter point calculated in Softsusy [Allanach] and Susyhit [Djouadi;
Mühlleitner, Spira]

Neutralino Pair plus One Jet

Calculational setup:

- Virtual piece: GoSam
- Real piece: MadGraph
- Subtraction terms: MadDipole
- Phase space integration: MadEvent

Feynman rules provided by FeynRules in UFO format
Parameter point calculated in Softsusy [Allanach] and Susyhit [Djouadi.
Mühlleitner, Spira]

Neutralino Pair plus One Jet

Calculational setup:

- Virtual piece: GoSam
- Real piece: MadGraph
- Subtraction terms: MadDipole
- Phase space integration: MadEvent

Feynman rules provided by FeynRules in UFO format
Parameter point calculated in Softsusy [Allanach] and Susyhit [Djouadi,
Mühlleitner, Spira]

Neutralino Pair plus One Jet

Calculational setup:

- Virtual piece : GoSam
- Real piece: MadGraph
- Subtraction terms: MadDipole
- Phase space integration: MadEvent

Feynman rules provided by FeynRules in UFO format Parameter point calculated in Softsusy [Allanach] and Susyhit [Djouadi,
Mühlleitner, Spira]

Neutralino Pair plus One Jet: The Virtual Piece

Contributing subprocess:

- $q \bar{q} \rightarrow \chi_{1}^{0} \chi_{1}^{0} g$
- $q g \rightarrow \chi_{1}^{0} \chi_{1}^{0} q$
- $g \bar{q} \rightarrow \chi_{1}^{0} \chi_{1}^{0} \bar{q}$

Challenge:

- High multiplicity of loop diagrams $\mathcal{O}(1500)$ per subprocess
- Numerical stability of off-shell effects
- first $2 \rightarrow 3$ SUSY process including full off-shell effects and complex masses in loops

Neutralino Pair plus One Jet: The Virtual Piece

We also calculated the Higgs contribution to signal $h \in\{h, H, A\}$

and found them to be negligible.

Neutralino Pair plus One Jet: The Real Problem

The real radiation is dominated by resonant contributions. At leading order we have the following diagrams:

Neutralino Pair plus One Jet: The Real Problem

The "NLO" real contribution contains the following "doubly-resonant" diagrams

- Very sizeable contribution
- Ruins our perturbative expansion...

What has gone wrong?

- This is leading order "squark pair" production with subsequent decay

Neutralino Pair plus One Jet

Therefore we proceed using 2 approaches:

1. We include these diagrams

- somewhere between LO and NLO.
- One parton can become unresolved and this infrared singularity will be cancelled by the virtual contribution
- More realistic but not a genuine NLO correction

2. We remove them:

- We can get closer to a "K-factor" but unsure what it means physically

Neutralino Pair plus One Jet

Checks on calculation:

- IR poles from virtual cancel with the poles from the real contribution
- Virtual matrix element agrees with FeynArts [T. Hahn et al]
- We check the small width limit

Neutralino Pair plus One Jet

- NLO pdf set NNPDF2.3
- Cuts: follow ATLAS monojet cuts
- $p_{T, 1} \geq 100 \mathrm{GeV}, p_{T, 2} \leq 30 \mathrm{GeV},\left|\eta_{j}\right| \leq 4.5$
- $E_{T, \text { miss }} \geq 85 \mathrm{GeV}$
- Scale choice: $\mu=H_{T} / 2\left(\right.$ where $\left.H_{T}=\sum_{i} E_{T, i}\right)$

Neutralino Pair plus One Jet

- NLO pdf set NNPDF2.3
- Cuts: follow ATLAS monojet cuts
- $p_{T, 1} \geq 100 \mathrm{GeV}, p_{T, 2} \leq 30 \mathrm{GeV},\left|\eta_{j}\right| \leq 4.5$
- $E_{T, \text { miss }} \geq 85 \mathrm{GeV}$
- Scale choice: $\mu=H_{T} / 2$ (where $H_{T}=\sum_{i} E_{T, i}$)

Neutralino Pair plus One Jet

Scale variation:

- "NLO" + resonant : no improvement (as expected)
- "NLO" subtracted: still dominated by new channels (gluon in the initial state) still no scale stabilisation (disappointing but true)
- We would expect to see a stabilization for the correction to neutralino pair plus two jets (no new surprises)
- Quite a striking demonstration that K-factors for NLO are not uniform across the distributions

Room for improvement

What did we learn?

Work flow:

- Virtual piece \sim automatic
- Real piece \sim automatic
- Subtraction terms ~ automatic
- Matching : large cost of human time

Much progress has been made in the matching of the pieces using the Binoth Les Houches Interface

Room for improvement

What did we learn?

Work flow:

- Virtual piece \sim automatic
- Real piece \sim automatic
- Subtraction terms \sim automatic
- Matching : large cost of human time

Much progress has been made in the matching of the pieces using the Binoth Les Houches Interface

Room for improvement

What did we learn?

Work flow:

- Virtual piece \sim automatic
- Real piece \sim automatic
- Subtraction terms ~ automatic
- Matching : large cost of human time

Much progress has been made in the matching of the pieces using the Binoth Les Houches Interface

Room for improvement

What did we learn?

Work flow:

- Virtual piece \sim automatic
- Real piece \sim automatic
- Subtraction terms ~ automatic
- Matching : large cost of human time

Much progress has been made in the matching of the pieces using the Binoth Les Houches Interface

Room for improvement

What did we learn?

Work flow:

- Virtual piece \sim automatic
- Real piece \sim automatic
- Subtraction terms ~ automatic
- Matching : large cost of human time
Much progress has been made in the matching of the pieces using the Binoth Les Houches Interface

Room for improvement

What did we learn?

Work flow:

- Virtual piece \sim automatic
- Real piece \sim automatic
- Subtraction terms ~ automatic
- Matching : large cost of human time

Much progress has been made in the matching of the pieces using the Binoth Les Houches Interface

Graviton +1 jet [Greiener, Heinicic, Reicicel, von Soden:FFraunhofen (in preparation)]

NLO QCD corrections to diphoton + jet production through graviton exchange in the ADD model [Arkani-Hamed, Dimopoulos, Dvali]

- One-Loop: GoSam
- Real + Dipole + Phase Space integration: Sherpa
- Communication: Binoth Les Houches Accord
- Model : UFO format

Golem95C developed to treat up to boxes of rank 5 (will be extended in the future) and process checked with higher rank Samurai

More details and new results soon Moving towards full automated NLO in BSM

Towards Full NLO: Standard Model Example

GoSam + Sherpa: Higgs +2 jets
[van Deurzen, Greiner, Luisoni, Mastrolia, Mirabella, Ossola, Peraro, von Soden-Fraunhofen, Tramontano '13]

- Effective theory in the limit $m_{t} \rightarrow \infty$
- One extra power of loop momentum in the numerator compared to renormalisable case \rightarrow rank of integral can now be greater than the number of propagators
- Reduction libraries Samurai developed to treat higher rank multileg computation [Mastrolia, Mirabella, Peraro '12; van Deurzen, Mastrolia, Mirabella,

Ossola, Tramontano '12]

Towards Full NLO: Standard Model Example

GoSam + Sherpa: Higgs +2 jets [van Deurren, Greiner, Luisoni, Mastrolia, Mirabella,
Ossola, Peraro, von Soden-Fraunhofen, Tramontano '13]

Towards Full NLO: Standard Model Example

GoSam + Sherpa: Higgs +3 jets [van Deurzen, Greiner, Luisoni, Mastrolia, Mirabella,
Ossola, Peraro, von Soden-Fraunhofen, Tramontano '13]
Rotation of phase space point around the y-axis

Code Development Outlook

Further Code Optimisation:

- Challenge: How can we decrease the size of our generated code?
- Solution: Code optimised using new features of FORM (replacing Haggies) [FORM team, Nikhef]
Example:
- 1 loop piece of process : $g g \rightarrow t \bar{t} g$ (~ 500 diagrams, all helicities)
- Optimisations: Haggies \rightarrow Form
- size of test.exe: $1.9 \mathrm{~GB} \rightarrow 488 \mathrm{MB}$
- Executable is $1 / 4$ of the size!

This and other code developments \rightarrow GoSam-2.0 later this year

Summary and Outlook

- Interest in physics processes (and healthy competition) pushes code development and can lead to fruitful collaboration across groups
- GoSam in good shape for BSM physics: I presented a couple of examples Beyond the Standard Model
- Find it at http://projects.hepforge.org/gosam
- New release with significant optimizations expected v. soon

