

INDEPENDENCE DAY 2012

Clear evidence for a new resonance!
Now reaching > 10σ

REASONS FOR EXCITEMENT

REASONS FOR EXCITEMENT

- The last missing piece of the SM

REASONS FOR EXCITEMENT

- The last missing piece of the SM

REASONS FOR EXCITEMENT

- The last missing piece of the SM
- At the origin of mass

level of excitement

REASONS FOR EXCITEMENT

- The last missing piece of the $S M$
- At the origin of mass

level of excitement

REASONS FOR EXCITEMENT

- The last missing piece of the $S M$
- At the origin of mass
- Unitarization ofWW scattering

level of excitement

REASONS FOR EXCITEMENT

- The last missing piece of the $S M$
- At the origin of mass
- Unitarization ofWW scattering

level of excitement

REASONS FOR EXCITEMENT

- The last missing piece of the $S M$
- At the origin of mass
- Unitarization ofWW scattering
- An elementary scalar particle
level of excitement

REASONS FOR EXCITEMENT

- The last missing piece of the $S M$
- At the origin of mass
- Unitarization ofWW scattering
- An elementary scalar particle

REASONS FOR EXCITEMENT

- The last missing piece of the $S M$
- At the origin of mass
- Unitarization ofWW scattering
- An elementary scalar particle

REASONS FOR EXCITEMENT

- The last missing piece of the SM
- At the origin of mass
- Unitarization ofWW scattering
- An elementary scalar particle
- The carrier of a new interaction not under the spell of the gauge principle

REASONS FOR EXCITEMENT

- The last missing piece of the SM
- At the origin of mass
- Unitarization ofWW scattering
- An elementary scalar particle
- The carrier of a new interaction not under the spell of the gauge principle
- It was difficult!

REASONS FOR EXCITEMENT

- The last missing piece of the SM
- At the origin of mass
- Unitarization ofWW scattering
- An elementary scalar particle
- The carrier of a new interaction not under the spell of the gauge principle
- It was difficult!
level of excitement

DISCOVERIES AT HADRON COLLIDERS

DISCOVERIES AT HADRON COLLIDERS

peak

$$
\mathrm{pp} \rightarrow \mathrm{H} \rightarrow 4 \mid
$$

Background directly measured from data. TH needed only for parameter extraction (Normalization, acceptance,...)

DISCOVERIES AT HADRON COLLIDERS

peak

$$
\mathrm{pp} \rightarrow \mathrm{H} \rightarrow 4 \mathrm{I}
$$

"easy"
Background directly measured from data. TH needed only for parameter extraction (Normalization, acceptance,...)
shape

hard

Background shapes needed. Flexible MC for both signal and background tuned and validated with data.

DISCOVERIES AT HADRON COLLIDERS

peak
$p p \rightarrow H \rightarrow 4 \mid$

Background directly measured from data. TH needed only for parameter extraction (Normalization, acceptance,...)

Background shapes needed. Flexible MC for both signal and background tuned and validated with data.
discriminant
$\mathrm{pp} \rightarrow \mathrm{H} \rightarrow \mathrm{W}^{+} \mathrm{W}^{-}$

very hard
Background normalization and shapes known very well. Interplay with the best theoretical predictions (via MC) and data.

NO SIGN OF NEW PHYSICS (SO FAR)!

WHY HAPPY?

WHY HAPPY?

- Optimism: New Physics could be hiding there already, just need to dig it out.

WHY HAPPY?

- Optimism: New Physics could be hiding there already, just need to dig it out.
- Democratization: No evidence of most beaten BSM proposals, means more and more room for diversification. Possibility for small teams to make a big discovery.

WHY HAPPY?

- Optimism: New Physics could be hiding there already, just need to dig it out.
- Democratization: No evidence of most beaten BSM proposals, means more and more room for diversification. Possibility for small teams to make a big discovery.
- Ingenuity/Creativity: From new signatures to smart and new analysis techniques (MVA), and combination with non-collider searches (DM, Flavor...).

WHY HAPPY?

- Optimism: New Physics could be hiding there already, just need to dig it out.
- Democratization: No evidence of most beaten BSM proposals, means more and more room for diversification. Possibility for small teams to make a big discovery.
- Ingenuity/Creativity: From new signatures to smart and new analysis techniques (MVA), and combination with non-collider searches (DM, Flavor...).
- Massification (the practice of making luxury products available to the mass market) : MC's in the hands of every th/exp might turn out to be the best overall strategy for discovering the Unexpected.

WHY HAPPY?

- Optimism: New Physics could be hiding there already, just need to dig it out.
- Democratization: No evidence of most beaten BSM proposals, means more and more room for diversification. Possibility for small teams to make a big discovery.
- Ingenuity/Creativity: From new signatures to smart and new analysis techniques (MVA), and combination with non-collider searches (DM, Flavor...).
- Massification (the practice of making luxury products available to the mass market) : MC's in the hands of every th/exp might turn out to be the best overall strategy for discovering the Unexpected.
- Flexibility:We need MC that are able to predict the pheno of the Unexpected.

WHY HAPPY?

- Optimism: New Physics could be hiding there already, just need to dig it out.
- Democratization: No evidence of most beaten BSM proposals, means more and more room for diversification. Possibility for small teams to make a big discovery.
- Ingenuity/Creativity: From new signatures to smart and new analysis techniques (MVA), and combination with non-collider searches (DM, Flavor...).
- Massification (the practice of making luxury products available to the mass market) : MC's in the hands of every th/exp might turn out to be the best overall strategy for discovering the Unexpected.
- Flexibility:We need MC that are able to predict the pheno of the Unexpected.
- Accuracy: accurate simulations for both SM and BSM are a must.

WHY HAPPY?

- Optimism: New Physics could be hiding there already, just need to dig it out.
- Democratization: No evidence of most beaten BSM proposals, means more and more room for diversification. Possibility for small teams to make a big discovery.
- Ingenuity/Creativity: From new signatures to smart and new analysis techniques (MVA), and combination with non-collider searches (DM, Flavor...).
- Massification (the practice of making luxury products available to the mass market) : MC's in the hands of every th/exp might turn out to be the best overall strategy for discovering the Unexpected.
- Flexibility:We need MC that are able to predict the pheno of the Unexpected.
- Accuracy: accurate simulations for both SM and BSM are a must.

LHC MASTER FORMULA

LHC MASTER FORMULA

LHC MASTER FORMULA

LHC MASTER FORMULA

LHC MASTER FORMULA

LHC MASTER FORMULA

$$
\sigma_{X}=\sum_{a, b} \int_{0}^{1} d x_{1} d x_{2} f_{a}\left(x_{1}, \mu_{F}^{2}\right) f_{b}\left(x_{2}, \mu_{F}^{2}\right) \times \hat{\sigma}_{a b \rightarrow X}\left(x_{1}, x_{2}, \alpha_{S}\left(\mu_{R}^{2}\right), \frac{Q^{2}}{\mu_{F}^{2}}, \frac{Q^{2}}{\mu_{R}^{2}}\right)
$$

Pheno/Th exploit this formula to provide accurate and flexible predictions from a given model (SM, MSSM,...)

HOW WE (USED TO) MAKE PREDICTIONS?

First way:

- For low multiplicity include higher order terms in our fixed-order calculations $(\mathrm{LO} \rightarrow \mathrm{NLO} \rightarrow \mathrm{NNLO} . .$.

$$
\Rightarrow \quad \hat{\sigma}_{a b \rightarrow X}=\sigma_{0}+\alpha_{S} \sigma_{1}+\alpha_{S}^{2} \sigma_{2}+\ldots
$$

- For high multiplicity use the tree-level results

Comments:
I. The theoretical errors systematically decrease.
2. Pure theoretical point of view.
3. A lot of new techniques and universal algorithms have been developed.
4. Final description only in terms of partons and calculation of IR safe observables \Rightarrow not directly useful for simulations

NLO BASICS

NLO contributions have three parts

NLO BASICS

NLO contributions have three parts

$$
\sigma^{\mathrm{NLO}}=\int_{m} d^{(d)} \sigma^{V}+
$$

NLO BASICS

NLO contributions have three parts

$$
\sigma^{\mathrm{NLO}}=\int_{m} d^{(d)} \sigma^{V}+
$$

NLO BASICS

NLO contributions have three parts

$$
\sigma^{\mathrm{NLO}}=\int_{m} d^{(d)} \sigma^{V}+
$$

NLO BASICS

NLO contributions have three parts

$$
\sigma^{\mathrm{NLO}}=\int_{m} d^{(d)} \sigma^{V}+
$$

- Loops have been for long the bottleneck of NLO computations (In fact they still are for BSM)
f. Virtuals and Reals are each divergent and subtraction scheme need to be used (Dipoles, FKS, Antenna's)
.r. A lot of work is necessary for each computation

NLO BASICS

NLO contributions have three parts

$\sigma^{\mathrm{NLO}}=\int_{m} d^{(d)} \sigma^{V}+$
Virtual part

$\int_{m+1} d^{(d)} \sigma^{R}+$
Real emission part

$$
\int_{m} d^{(4)} \sigma^{B}
$$

Born
-. Loops have been for long the bottleneck of NLO computations (In fact they still are for BSM)
\&. Virtuals and Reals are each divergent and subtraction scheme need to be used (Dipoles, FKS, Antenna's)
-. A lot of work is necessary for each computation
The cost of a new prediction at NLO can easily exceed I00k $€$.

LOOP TECHNIQUES

BEST EXAMPLE: MCFM

Downloadable general purpose NLO code [Campbell, Ellis, Williams+collaborators]

Final state	Notes	Reference
W/Z		
diboson (W/Z/Y)	photon fragmentation, anomalous couplings	hep-ph/9905386, arXiv:1105.0020
Wbb	massless b-quark massive b quark	hep-ph/9810489 arXiv:1011.6647
Zbb	massless b-quark	hep-ph/0006304
W/Z+I jet		
W/Z+2 jets		hep-ph/0202176, hep-ph/0308195
Wc	massive c-quark	hep-ph/0506289
Zb	5-flavour scheme	hep-ph/0312024
Zb+jet	5-flavour scheme	hep-ph/0510362

Final state	Notes	Reference
H (gluon fusion)		
$\mathrm{H}+\mathrm{I}$ jet (g.f.)	effective coupling	
$\mathrm{H}+2$ jets (g.f.)	effective coupling	hep-ph/0608194, arXiv:1001.4495
$\mathrm{WH} / \mathrm{ZH}$		
H (WBF)		hep-ph/0403194
Hb	5-flavour scheme	hep-ph/0204093
t	s- and t-channel (5F), top decay included	hep-ph/0408158
t	t-channel (4F)	arXiv:0903.0005, arXiv:0907.3933
Wt	5-flavour scheme	hep-ph/0506289
top pairs	top decay included	

~40 processes
First results implemented in 1998 ...this is 13 years worth of work of several people ($\sim 5 \mathrm{M} \$ / € / \mathrm{CHF}$) Cross sections and parton-level distributions at NLO are provided One general framework. However, each process implemented by hand

HOW WE (USED TO) MAKE PREDICTIONS?

Second way:

- Describe final states with high multiplicities starting from $2 \rightarrow 1$ or $2 \rightarrow 2$ procs, using parton showers, and then an hadronization model.

Comments:

1. Fully exclusive final state description for detector simulations
2. Normalization is very uncertain
3.Very crude kinematic distributions for multi-parton final states
3. Improvements are only at the model level.

ON THE SHOULDERS OF THE GIANTS

HERWIG, PYTHIA and SHERPA intend to offer a convenient framework for LHC physics studies, but with slightly different emphasis:

PYTHIA (successor to JETSET, begun in 1978):

- originated in hadronization studies: the Lund string
- leading in development of multiple parton interactions
- pragmatic attitude to showers \& matching
- the first multipurpose generator: machines \& processes

HERWIG (successor to EARWIG, begun in 1984):

- originated in coherent-shower studies (angular ordering)
- cluster hadronization \& underlying event pragmatic add-on
- large process library with spin correlations in decays

SHERPA (APACIC++/AMEGIC++, begun in 2000):

- own matrix-element calculator/generator
- extensive machinery for CKKW matching to showers
- PYTHIA-like MPI model + HERWIG-like hadronization modı

ON THE SHOULDERS OF THE GIANTS

HERWIG, PYTHIA and SHERPA intend to offer a convenient framework for LHC physics studies, but with slightly different emphasis:

PYTHIA (successor to JETSET, begun in 1978):

- originated in hadronization studies: the Lund string
- leading in development of multiple parton interactions
- pragmatic attitude to showers \& matching
- the first multipurpose generator: machines \& processes

HERWIG (successor to EARWIG, begun in 1984):

- originated in coherent-shower studies (angular ordering)
- cluster hadronization \& underlying event pragmatic add-on
- large process library with spin correlations in decays

Sakurai Prize

SHERPA (APACIC++/AMEGIC++, begun in 2000):

- own matrix-element calculator/generator
- extensive machinery for CKKW matching to showers
- PYTHIA-like MPI model + HERWIG-like hadronization modı

SM STATUS A FEW YEARS AGO

 $\mathrm{pp} \rightarrow$ n particles
SM STATUS A FEW YEARS AGO

 $\mathrm{pp} \rightarrow$ n particles
SM STATUS A FEW YEARS AGO

 $\mathrm{pp} \rightarrow$ n particles

2345678910 complexity [n]

SM STATUS A FEW YEARS AGO

$\mathrm{pp} \rightarrow$ n particles

fully inclusive
parton-level
fully exclusive

$$
12345678910
$$

SM STATUS A FEW YEARS AGO

WHAT ABOUT NEW PHYSICS?

BSM (=SUSY)STATUS A FEW YEARS AGO

PREDICTIVE MC (SIMPLIFIED) PROGRESS

Fully Automatic NLOwPS

BSM framework
Merging at NLO
Merging and matching:

New Loop ME+PS NLOwPS 1

2002

PREDICTIVE MC (SIMPLIFIED) PROGRESS

2008

2002

PREDICTIVE MC (SIMPLIFIED) PROGRESS

Fully Automatic NLOwPS

BSM framework

Merging and matching:

New Loop ME+PS NLOwPS

2008
2002

ME WITH PS

Matrix Element

I. parton-level description
2. fixed order calculation
3. quantum interference exact
4. valid when partons are hard and well separated
5. needed for multi-jet description

Shower MC

I. hadron-level description
2. resums large logs
3. quantum interference through angular ordering
4. valid when partons are collinear and/or soft
5. nedeed for realistic studies

ME WITH PS

Matrix Element

I. parton-level description
2. fixed order calculation
3. quantum interference exact
4. valid when partons are hard and well separated
5. needed for multi-jet description

Shower MC

I. hadron-level description
2. resums large logs
3. quantum interference through angular ordering
4. valid when partons are collinear and/or soft
5. nedeed for realistic studies

Approaches are complementary: merge them!

ME WITH PS

Matrix Element

I. parton-level description
2. fixed order calculation
3. quantum interference exact
4. valid when partons are hard and well separated
5. needed for multi-jet description

Shower MC

I. hadron-level description
2. resums large logs
3. quantum interference
through angular ordering
4. valid when partons are collinear and/or soft
5. nedeed for realistic studies

Approaches are complementary: merge them!

Difficulty: avoid double counting

Merging fixed Order With PS

V+JETS AT THE LHC

Working amazingly well!

V+JETS AT THE LHC

Working amazingly well!

EXAMPLE: BSM MULTIJET FINAL STATES

$$
\mathrm{pp} \rightarrow \times 6 \text { +jets }
$$

$p p \rightarrow$ Graviton (ADD\&RS) +jets

New Physics models can be easily included in Matrix Element generators via FeynRules and results automatically for multi-jet inclusive final state obtained at the same level of accuracy that for the SM.

WHAT ABOUT NLO?

This simple approach does not work:

- Instability: weights associated to $I^{n} M C$ and $I^{n+1} M C$ are divergent pointwise (infinite weights).
- Double counting: $\boldsymbol{d}^{\text {naive }}{ }_{\text {NLOwPS }}$ expanded at NLO does not coincide with NLO rate. Some configurations are dealt with by both the NLO and the PSMC.

Currently, two solutions available

WHAT ABOUT NLO?

$$
\mathrm{d} \sigma_{\mathrm{NAIVE}}^{\mathrm{NLOwPS}}=\left[\mathrm{d} \Phi_{B}\left(B\left(\Phi_{B}\right)+V+S_{\mathrm{ct}}^{\mathrm{int}}\right)\right] I_{\mathrm{MC}}^{n}+\left[\mathrm{d} \Phi_{B} \mathrm{~d} \Phi_{R \mid B}\left(R-S_{c t}\right)\right] I_{\mathrm{MC}}^{n+1}
$$

This simple approach does not work:

- Instability: weights associated to $I^{n} M C$ and $I^{n+1} M C$ are divergent pointwise (infinite weights).
- Double counting: d $\boldsymbol{\sigma}^{\text {naive }}{ }_{\text {NLOwPS }}$ expanded at NLO does not coincide with NLO rate. Some configurations are dealt with by both the NLO and the PSMC.

Currently, two solutions available

NLOWPS IN A NUTSHELL

$$
\begin{aligned}
& \mathrm{d} \sigma^{\mathrm{NLO}+\mathrm{PS}}=\mathrm{d} \Phi_{B} \bar{B}^{s}\left(\Phi_{B}\right)\left[\Delta_{\text {integrates to I (unitarity) }}^{\Delta^{s}\left(p_{\perp}^{\min }\right)+\mathrm{d} \Phi_{R \mid B} \frac{R^{s}\left(\Phi_{R}\right)}{B\left(\Phi_{B}\right)} \Delta^{s}\left(p_{T}(\Phi)\right)}\right]+\mathrm{d} \Phi_{R} R^{f}\left(\Phi_{R}\right) \\
& \quad \text { with }
\end{aligned}
$$

$$
\bar{B}^{s}=B\left(\Phi_{B}\right)+\left[V\left(\Phi_{B}\right)+\int \mathrm{d} \Phi_{R \mid B} R^{s}\left(\Phi_{R \mid B}\right)\right] \quad \begin{aligned}
& \text { Ful cross section (ff } \mathrm{F}=\mathrm{l} \text {) at fixed Born } \\
& \text { kinematics }
\end{aligned}
$$

$$
R\left(\Phi_{R}\right)=R^{s}\left(\Phi_{R}\right)+R^{f}\left(\Phi_{R}\right)
$$

This formula is valid both for both MC@NLO and POWHEG

MC@NLO: $\quad R^{\mathrm{s}}(\Phi)=P\left(\Phi_{R \mid B}\right) B\left(\Phi_{B}\right)$
POWHEG: $\quad R^{\mathrm{s}}(\Phi)=F R(\Phi), R^{\mathrm{f}}(\Phi)=(1-F) R(\Phi)$

Needs exact mapping $\left(\Phi_{B}, \Phi_{R}\right) \rightarrow \Phi$
$\mathrm{F}=\mathrm{I}=$ Exponentiates the Real.
It can be damped by hand.

MC@NLO AND POWHEG

MC@NLO AND POWHEG

MC@NLO

[Frixione, Webber, 2003;
Frixione, Nason, Webber, 2003]

- Matches NLO to HERWIG and

HERWIG++ angular-ordered PS.

- Some events have negative weights.
- Large and well tested library of processes.
- Now available also for Pythia (Q^{2})
[Torrielli, Frixione, 002.4293]
- Now automatized [Frederix, Frixione,Torrielli]
- Now available in aMC@NLO (see later)

MC@NLO AND POWHEG

MC@NLO

[Frixione, Webber, 2003;
Frixione, Nason, Webber, 2003]

- Matches NLO to HERWIG and

HERWIG++ angular-ordered PS.

- Some events have negative weights.
- Large and well tested library of processes.
- Now available also for Pythia $\left(Q^{2}\right)$
[Torrielli, Frixione, I 002.4293]
- Now automatized [Frederix, Frixione,Torrielli]
- Now available in aMC@NLO (see later)

POWHEG

[Nason 2004;
Frixione, Nason, Oleari, 2007]

- Is independent* of the PS. It can be interfaced to PYTHIA, HERWIG or SHERPA.
- Generates only* positive unit weights.
- Can use existing NLO results via the

POWHEG-Box [Aioli, Nason, Oleari, Re et al. 2009]

- Method used by HELAC, HERWIG++ and

SHERPA [Kardos, Papadopoulos,Trocsanyi IIOI.2672],
[Hoeche,Krauss, Schooenner, Siegert, I 008.5399]

SM STATUS : SINCE 2007

$\mathrm{pp} \rightarrow$ n particles
fully inclusive
parton-level
fully exclusive

2345678910 complexity [n]

SM STATUS : SINCE 2007

AUTOMATION

\&COST SAVING
Trade human time and expertise spent on computing one process at the time with time on physics and pheno.
\& ROBUSTNESS
Programs are modular and computations based on elements that can be systematically and extensively checked. Trust can be easily built.
-WVIDE ACCESSIBILITY
One framework for all. Available to everybody for an unlimited set of applications for all. Suitable to EXP collaboration.

AUTOMATION

AUTOMATION

GENIUS: 1 \% INSPIRATION AND 99\% PERSPIRATION. [Thomas Edison]

AUTOMATION

GENIUS: 1 \% INSPIRATION AND 99\% PERSPIRATION.
[Thomas Edison]

TRUE, BUT PERSPIRATION CAN BE AUTOMATED!

SM STATUS : SINCE 2007

PREDICTIVE MC (SIMPLIFIED) PROGRESS

Fully Automatic NLOwPS

BSM framework

Merging at NLO
Merging and
New Loop
ME+PS
NLOwPS techniques

2011

2002

PREDICTIONS AT NLO

Predictions At NLO

Generalized Unitarity
(ex. BlackHat, Rocket,...)
Integrand Reduction
(ex. CutTools, Samurai)
Tensor Reduction (ex. Golem)

Predictions At NLO

Thanks to new amazing results, some of them inspired by string theory developments, now the computation of loops has been extended to high-multiplicity processes or/and automated.

One indicator of NLO progress

$$
\begin{array}{lrr}
\mathrm{pp} \rightarrow \mathrm{~W}+0 \text { jet } & 1978 & \text { Altarelli, Ellis, Martinelli } \\
\mathrm{pp} \rightarrow \mathrm{~W}+1 \text { jet } & 1989 & \text { Arnold, Ellis, Reno } \\
\mathrm{pp} \rightarrow \mathrm{~W}+2 \text { jets } & 2002 & \text { Campbell, Ellis } \\
\mathrm{pp} \rightarrow \mathrm{~W}+3 \text { jets } & 2009 & \text { Ellis, Melnikov, Zanderighi } \\
\mathrm{pp} \rightarrow \mathrm{~W}+4 \text { jets } & 2010 & \text { BH+Sherpa }
\end{array}
$$

One indicator of NLO progress

$$
\begin{array}{lcr}
\text { pp } \rightarrow W+0 \text { jet } & 1978 & \text { Altarelli, Ellis, Martinelli } \\
\text { pp } \rightarrow W+1 \text { jet } & 1989 & \text { Arnold, Ellis, Reno } \\
\text { pp } \rightarrow W+2 \text { jets } & 2002 & \text { Campbell, Ellis } \\
\text { pp } \rightarrow W+3 \text { jets } & 2009 & \text { BH+Sherpa } \\
\text { pp } \rightarrow W+4 \text { jets } & 2010 & \text { Ellis, Melnikov, Zanderighi } \\
\hline \text { BH } \rightarrow W+5 \text { jets } & 2013 & \text { BH+Sherpa }
\end{array}
$$

GUINNESS WR NLO CALCULATIONS

W+5 jets
[Bern et al., I 304.| 253]

tt+2jets
[Bevilacqua et al., I 002.4009]

Both based on unitarity methods and recursive relations for trees.

NEW CODES FOR AUTOMATIC LOOP AMPLITUDES

- MadLoop : Hirschi et al., II03.062I, based on MadGraph + CutTools
- HELAC-NLO : Bevilacqua et al., illi.l499, based on HELAC + CutTools
- GoSam : Cullen et al., IIII.6534, based on QGRAF+SAMURAI+Golem
- Open Loops : Cascioli et al., IIII.5206, based on the combination of several approaches

NEW CODES FOR AUTOMATIC LOOP AMPLITUDES

- MadLoop : Hirschi et al., Il I03.062I, based on MadGraph + CutTools
- HELAC-NLO : Bevilacqua et al., illio.l499, based on HELAC + CutTools
- GoSam : Cullen et al., illi.6534, based on QGRAF+SAMURAI+Golem
- Open Loops : Cascioli et al., IIII.5206, based on the combination of several approaches

Limitations on applications (i.e. number of external partons or BSM) are systematically and quickly overcome:
"the wave function of the automatic loop effort has collapsed 20 II "

PREDICTIVE MC (SIMPLIFIED) PROGRESS

2008

2002

PREDICTIVE MC (SIMPLIFIED) PROGRESS

Fully Automatic NLOwPS

BSM framework

BSM TH/EXP INTERACTIONS : THE OLD WAY

PHENO
Idea

BSM TH/EXP INTERACTIONS : THE OLD WAY

Idea
Lagrangian
Aut. Feyn. Rules
Any amplitude
Any x-sec
partonic events

EXP

BSM TH/EXP INTERACTIONS : THE NEW PATH

BSM TH/EXP INTERACTIONS : THE NEW PATH

- One path for all
- Physics and software validations streamlined
- Robust and efficient Th/Exp communication

FeynRules/LanHEP

- It works top-down and bottom-up

ME Generator
Signal \& Bkg

Delphes/Sim

Data

BSM TH/EXP INTERACTIONS : THE NEW PATH

THE FEYNRULES PROJECT

[Christensen, Degrande, Duhr, Fuks]

Now quickly moving to NLO....

PREDICTIVE MC (SIMPLIFIED) PROGRESS

Fully Automatic NLOwPS

Merging and

BSM framework

Merging at NLO

2011

2002

FROM SEMI TO FULLY AUTOMATIC MC'S AT NLO

Processes involving tops can be simulated at the NLO+PS level, via:

- POWHEG-Box (public) library : many SM procs
- POWHEL (not public) : a few procs involving top
- Sherpa + external loop codes (to be public): many procs
- aMC@NLO(public): process directly generated by the user

AUTOMATIC MC'S AT NLO

Suppose now you are interested in studying Higgs production in association with t tbar :

```
./bin/mg5
> generate p p > t t~ h [QCD]
> output tth
> launch
```

or with single top (both t and $t \sim$):

```
./bin/mg5
> define tx = t t~
> generate p p > tx h j [QCD]
> output thj
> launch
```


AUTOMATIC MC'S AT NLO

The range of SM processes that can be generated aMC@NLO (SM plus weak BSM) is only limited by computing power. It basically encompasses (and goes beyond) the current MCFM and POWHEG-Box libraries.

AUTOMATIC MC'S AT NLO

The range of SM processes that can be generated an BSM) is only limited by computing power. It basically beyond) the current MCFM and POWHEG-Box libra

	,	. mame	- - -
	-	-	-	- $-2 \times-\cdots$
*....\|**	-	".	**	
+.....1早	*	*	-	
+....... m	*	".	"*	
, m	-	"*	"	
	-	-	-	--mumers
+**:"-m	\cdots	-	*	
…e:"...-m	-	-	*	滋:
, $+\cdots \times \cdots$	-	-	-	-
	-	-	\sim	-
	-	-	-	-
+1...-m	-	-	-	-
+, $+\cdots+1$ -	-	-	-	-
+1.+6+11-m	-	*	"-	-
+...1:m	-	**	"-	
+,..: ${ }^{\text {m }}$ -	*	"*	"	
	-	*	-	
+1..nev-m	-	-	-	-7ane - - - -
	-	-	*	-
+,...... mer	-	-	-	
	-	-	"	-
, $+\cdots \cdots$	-	-	"-	
	-	- +	"-	
+1.0.****	-	**	"-	
	-	-	-	
, $\cdot \cdots \cdots \times$	-	\cdots	"-	
+.......-m	-	-	*	- - -
……m	-	-	*	
W.wn/m	*	- +2.4	"	
+...0. ${ }^{\text {m }}$	-	-	"-	
	-	-	"-	
	-	- +n.4	"	
	-	-	\cdots	
	-	-	\cdots	
+..1: ${ }^{\text {ma }}$	\cdots	- + ne	"-	-
W.1: ${ }^{\text {m }}$	-	-	-	-
+..0-11-m	-	-	-	
+1.001tmer	-	-	"-	

AUTOMATIC MC'S AT NLO

The range of SM processes that can be generated aMC@NLO (SM plus weak BSM) is only limited by computing power. It basically encompasses (and goes beyond) the current MCFM and POWHEG-Box libraries.

AUTOMATIC MC'S AT NLO

The range of SM processes that can be generated aMC@NLO (SM plus weak BSM) is only limited by computing power. It basically encompasses (and goes beyond) the current MCFM and POWHEG-Box libraries.

- Signal simulation in the SM:

- Automatic : e.g., pp \rightarrow VBF,WH(+j),ZH(+j),ttH,...
- Available : $p p \rightarrow H+0,1,2$ extra jets + FxFx (NLO) merging.
- Bkg simulation:

- Available: QCD rich final states.
- Higgs characterization $\mathrm{pp} \rightarrow X\left(\|^{P}\right)+$ jets: codes publicly available.
- Extended Higgs sectors straightforward (in progress).

AUTOMATIC MC'S AT NLO

For H, NLO results known (but no public code available) for scalar Higgs since some time. No results for pseudoscalar A known.

First fully automatic results for both H and A [aMC@NLO:I I 04.56 I3].

Mild corrections to the shapes for $m_{h}=120$ GeV. PT pseudoscalar is harder. At high PT (boosted Higgs) the three curves are equal in shape and normalization.

AUTOMATIC MC'S AT NLO

Inclusion of spin correlations in top decays, can now be done via postprocessing of NLO event samples out in the Les Houches format with top on shell.

For example, in tth, the effects of the spin correlations on the pt shape of the charged lepton is more important than that of NLO QCD corrections!

SM STATUS : YEAR 2013

$\mathrm{pp} \rightarrow \mathrm{n}$ particles
fully inclusive
parton-level
fully exclusive
fully exclusive and automatic

SM STATUS : YEAR 2013

PREDICTIVE MC (SIMPLIFIED) PROGRESS

Fully Automatic NLOwPS

BSM framework

Merging at NLO
Merging and matching: ME+PS

New Loop techniques

2008
2002

MULTI-JET MERGING @ NLO

The problem consists in merging samples for S+0j, S+Ij, S+2j, S+...j computed at NLO consistently without double counting (where S can be a Higgs, a ttbar pair, aW-boson, etc.)
-Sherpa approach: Hoeche et al., I207.503।
-CKKW-L approach: Lavesson, Lonnblad, 08|l.2912, Lonnblad, Prestel, 121 I.4827-7278

- Geneva approach : Alioli et al. 1212.4504
- FxFx approach (with MC@NLO) : Frederix and Frixione $\mathbf{1 2 0 9 . 6 2 I 5}$

MULTI-JET MERGING @ NLO

The problem consists in merging samples for S+0j, S+Ij, S+2j, S+...j computed at NLO consistently without double counting (where S can be a Higgs, a ttbar pair, aW-boson, etc.)

- Sherpa approach: Hoeche et al., I207.503।
-CKKW-L approach: Lavesson, Lonnblad, 08|l.2912, Lonnblad, Prestel, 121 I.4827-7278
- Geneva approach : Alioli et al. 1212.4504
- FxFx approach (with MC@NLO) : Frederix and Frixione $\mathbf{1 2 0 9 . 6 2 1 5}$

The wave function of the merging at NLO effort has collapsed in 2012

MULTI-JET MERGING @ NLO

[Hoeche et al., I 207.5030]

- Jet rates
- Up to 3 extra jets at NLO
- Various approaches give consistent results
[Frederix, Frixione, I 209.62 I 5]

- Differential jet rates
- Matching up to 2 jets at NLO : consistent with up to I more jet.
- Method works for ttbar+jets and W+jets equally well.

PREDICTIVE MC (SIMPLIFIED) PROGRESS

Fully Automatic NLOwPS

BSM framework

Merging at NLO
Merging and matching:

New Loop ME+PS NLOwPS
 techniques

2008

2002

PREDICTIVE MC (SIMPLIFIED) PROGRESS

Fully Automatic NLOwPS

BSM framework

Merging and

2011
2009
2008

 $2 0 1 2 \longdiv { 2 0 1 3 }$

2002
aNLOwPS4BSM

PREDICTIVE MC (SIMPLIFIED) PROGRESS

Fully Automatic NLOwPS

BSM framework

Merging and

techniques

$$
2008
$$

AUTOMATIC SUSY AT NLO WITH MADGOLEM

- All pp to sparticle-sparticle channels available
- No events, but completely differential in partonic observables.
- Shapes very similar to those obtained with ME+PS merging at LO.

AUTOMATIC BSM AT NLO WITH GOSAM

GoSam is ready to provide BSM loop amplitudes

- Model inheritance from FeynRules and LANHEP
- Fully automated (apart from renormalization beyond QCD)
- NO NEED for additional Feynman rules for rational part.
- Support for effective vertices, spin-two particles
- Interface (via BLHA) to any Monte Carlo program which can provide the NLO real radiation (or events)

More to come:
$p p \rightarrow(G \rightarrow \gamma \gamma)+1$ jet
[Greiner et al. to appear]

NEXT IN ACCURATE MC'S 4 BSM

- Promote the available automatic NLO BSM to MC's and make them available to the exp community.
- Extend capabilities to cover effective field theories.
- Improve/Extend the BLHA interface \rightarrow LH 2013
- Include automatic evaluation of uncertainties via reweighting $\rightarrow \mathrm{LH} 2013$
- Feeding down improvements in advanced analyses techniques (MVA, MEM, Boosted objects)

SUMMARY

SUMMARY

- The perfect time for all MC activities and developments connected to boosting our capabilities in the search of New Physics.

SUMMARY

- The perfect time for all MC activities and developments connected to boosting our capabilities in the search of New Physics.
- Many opportunities to make an impact in the field opening up at all levels.

SUMMARY

- The perfect time for all MC activities and developments connected to boosting our capabilities in the search of New Physics.
- Many opportunities to make an impact in the field opening up at all levels.
- Main points:

SUMMARY

- The perfect time for all MC activities and developments connected to boosting our capabilities in the search of New Physics.
- Many opportunities to make an impact in the field opening up at all levels.
- Main points:
- Flexibility: simulation of any new physics, resonant or not, pairing with DM and Flavor constraints.

SUMMARY

- The perfect time for all MC activities and developments connected to boosting our capabilities in the search of New Physics.
- Many opportunities to make an impact in the field opening up at all levels.
- Main points:
- Flexibility: simulation of any new physics, resonant or not, pairing with DM and Flavor constraints.
- Accuracy: Automatic NLO, NLO event generators, merging at NLO for BSM.

SUMMARY

- The perfect time for all MC activities and developments connected to boosting our capabilities in the search of New Physics.
- Many opportunities to make an impact in the field opening up at all levels.
- Main points:
- Flexibility: simulation of any new physics, resonant or not, pairing with DM and Flavor constraints.
- Accuracy: Automatic NLO, NLO event generators, merging at NLO for BSM.
- Modularity/Automation: quickly capitalize on technical/ conceptual breakthroughs at the community level.

http://www.montecarlonet.org/Goettingen2013

