



# PHYSICS BEYOND THE STANDARD MODEL WITH PYTHIA 8

Nishita Desai University College London





# What is Pythia 8?



- General purpose Monte-Carlo generator
- Simulates collision events: hard process, showering, hadronisation, multiple interactions, underlying event ...
- Version 8.1 released in Oct2007. Current version 8.175



Download and online manual from <u>http://home.thep.lu.se/~torbjorn/Pythia.html</u>





# Support for Pythia 6 has stopped!

| •••                                                                 |
|---------------------------------------------------------------------|
| Development of Pythia 6 now stops. We will still provide support    |
| and urgent fixes to the code, if necessary, until 1 March 2013.     |
| At this point, the Pythia 6 code will be frozen, and a final legacy |
| version will be released later in 2013. We will then                |
| continue to answer questions regarding the behavior of Pythia 6     |
| until 1 July 2013, after which only Pythia 8 will be actively       |
| developed and supported.                                            |
| • • •                                                               |

Full effort to make Pythia 8 better than Pythia 6 in all respects.

Needs more users and feedback.





- Important to model backgrounds correctly to observe BSM signatures.
- Current state-of-the-art SM calculations use ME generators + PS with matching followed by hadronisation.
  - Pythia 8 provides various interfaces to external ME generators
  - ➡ LO/NLO matching for processes available



# **ME + PS matching at NLO!**



### **UNLOPS**



Lonnblad and Prestel; arXiv:1211.7278

Also available LO matching via new Unitarised ME+PS merging (UMEPS), MLM and CKKW-L.



### Interfaces



- $\blacklozenge$  Interface to LHAPDF or other external PDF libraries.
- Les Houches Accord (LHA) files for reading events or runtime LHA interface.
- Semi-internal processes for programs like Madgraph 5.
- ✦ HepMC output for programs like RIVET, Delphes etc.
- $\blacklozenge$  Can be compiled as a plugin to ROOT.
- ✦ Generalised SLHA input for any BSM model.





Other major improvements:

- Improvements to parton showers; possibility to use external PS programs (e.g. Vincia)
- Improvements to MPI
- Showering to take into account colour-epsilon topologies, sextets.
- Hadronisation in presence of coloured exotic particles (R-hadrons [M. Fairbairn et al., Phys. Rep. 438 (2007)], long-lived triplets or octets, ...)

 Tau polarisation in both production and decay [*P*. Ilten, arXiv:1211.6730 [hep-ph]



### **Example card file**

| Example                                                                                           | card file                                                                                                                      | ≜UCL                                                                                                                                                                    |
|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ! 1) Settings that are used in                                                                    | n the main program.                                                                                                            | Sample                                                                                                                                                                  |
| Main:numberOfEvents = 1000<br>Main:timesAllowErrors = 10                                          | ! number of events to generate<br>! abort run after this many flawed events                                                    | • main01.cc: a simple study grams                                                                                                                                       |
| <pre>! 2) Settings related to outpu<br/>Init:showChangedSettings = on</pre>                       | <ul> <li>main02.cc: a simple study (</li> <li>main03.cc: a simple study (</li> </ul>                                           |                                                                                                                                                                         |
| <pre>Init:showChangedParticleData = #Init:showChangedResonanceDate Init:showOpeParticleDate</pre> | <ul> <li>main04.cc: tests of cross se<br/>topologies, using main04.cn</li> </ul>                                               |                                                                                                                                                                         |
| Next:numberCount = 100<br>Next:numberShowInfo = 1                                                 | <pre>! print data for this particular particle<br/>! print message every n events<br/>! print event information n times</pre>  | <ul> <li>main05.cc : generation of Q<br/>recombination finder and the C</li> </ul>                                                                                      |
| <pre>Next:numberShowProcess = 1 Next:numberShowEvent = 0</pre>                                    | <pre>! print process record n times ! print event record n times</pre>                                                         | <ul> <li>main06.cc : generation of Li<br/>and jet analysis.</li> </ul>                                                                                                  |
| <pre>Stat:showPartonLevel = on ! 3) Beam settings. Beams:idA = 2212 Beams:idB = 2212</pre>        | ! more statistics on MPI<br>! first beam, p = 2212, pbar = -2212<br>! second beam, p = 2212, pbar = -2212                      | <ul> <li>main07.cc : set up a fictitiou<br/>body) decay modes to a variet<br/>neutrinos. Suitable for astropa<br/>another program.</li> </ul>                           |
| <pre>Beams:eCM = 14000. ! 4) Settings for hard-process HiggsSM:gg2H = on 25:m0 = 125.4</pre>      | ! CM energy of collision, LHC<br>s generation internal to Pythia8.<br>! Higgs production by gluon-gluon fusion<br>! Higgs mass | <ul> <li>main08.cc: generation of the<br/>splitting the run into subruns, e<br/>in the main program or by sub-<br/>the selection, compensated by<br/>events.</li> </ul> |
| ! 5) Switch off some key compo                                                                    | main09.cc: generation of tw                                                                                                    |                                                                                                                                                                         |
| <pre>#PartonLevel:all = off #PartonLevel:MPI = off</pre>                                          | ! stop atter hard process<br>! no multiparton interactions                                                                     | • main10.cc: illustration how                                                                                                                                           |
| <pre>#PartonLevel:ISR = off #PartonLevel:FSR = off #HadronLevel:all = off</pre>                   | ! no initial-state radiation<br>! no final-state radiation<br>! stop after parton level                                        | <ul> <li>main11.cc: a study of top even<br/>currently only contains 100 even<br/>demonstration of the principles</li> </ul>                                             |

! no hadronization

18 April 2013, MC4BSM 2013

#HadronLevel:Hadronize = off



# Pythia 8 has a basic library of BSM processes that can be used for quick studies.

- BSM Higgses (2HDM)
- Fourth generation quarks
- New Gauge Bosons
- Left-Right symmetric models
- Leptoquarks
- Compositeness
- Hidden Valley
- Extra Dimensions
- SUSY

More exotic processes may be implemented via external programs.



# **BSM Higgses (2HDM):**



Start with two complex Higgs doublets (eight d.o.f.), three are "eaten", left with five: two CP-even, neutral; one CP-odd neutral and pair of charged Higgses.

Many 2HDM possibilities depending on which doublet couples to which fermions.

- Type I: all fermions couple only to second doublet
- Type II: up-type quarks couple to first, down-type and charged leptons to second (like in SUSY)
- Type III: up-type quarks and charged leptons to first, down-type to second
- Type IV: all quarks couple to first, all charged leptons to second.

# HiggsBSM:all = on

Common switch for the group of Higgs production beyond the Standard Model

#### HiggsBSM:ffbar2H1 = on

Scattering *f* fbar ->  $h^0(H_1^0)$ , where *f* sums over available flavours except top.

**HiggsBSM:gg2H1 = on** Scattering  $g g \rightarrow h^0(H_1^0)$  via loop contributions primarily from top.

```
parm HiggsH1:coup2d (default = 1.)
The h^0(H_1) coupling to down-type quarks.
```

```
parm HiggsH1:coup2u (default = 1.)
The h^0(H_1) coupling to up-type quarks.
```

```
parm HiggsH1:coup2l (default = 1.)
The h^0(H_1) coupling to (charged) leptons.
```

```
parm HiggsH1:coup2Z (default = 1.)
The h^0(H_1) coupling to Z^0.
```

```
parm HiggsH1:coup2W (default = 1.)
The h^0(H_1) coupling to W^+-.
```

```
parm HiggsH1:coup2Hchg (default = 0.)
```

...

```
CPX scenario possible
```

Can be turned on using

```
mode HiggsH1:parity (default = 1; minimum = 0; maximum = 3)
possibility to modify angular decay correlations in the decay of a h^0(H_1) decay Z^0 Z^0 or W^+ W^- to four fermions.
Currently it does not affect the partial width of the channels, which is only based on the above parameters.
option 0: isotropic decays.
option 1: assuming the h^0(H_1) is a pure scalar (CP-even), as in the MSSM.
option 2: assuming the h^0(H_1) is a pure pseudoscalar (CP-odd).
option 3: assuming the h^0(H_1) is a mixture of the two, including the CP-violating interference term.
```

Set couplings

#### Nishita Desai

```
18 April 2013, MC4BSM 2013
```



### **Extra Gauge Bosons**



NewGaugeBoson:ffbar2gmZZprime = on Scattering f fbar ->Z'^0. [..] mode Zprime:gmZmode (default = 0; minimum = 0; maximum = 6) Choice of full gamma^\*/Z^0/Z'^0 structure or not in the above process. [...] option 0: full gamma^\*/Z^0/Z'^0 structure, with interference included. option 1: only pure gamma^\* contribution. option 2: only pure Z^0 contribution. option 3: only pure Z'^0 contribution. option 4: only the gamma^\*/Z^0 contribution, including interference. option 5: only the  $Z^0/Z''^0$  contribution, including interference. option 6: only the  $Z^0/Z''^0$  contribution, including interference.

# Can be turned on with full interference with gamma/Z

flag Zprime:universality (default = on)

If on then you need only set the first-generation couplings below, and these are automatically also used for the second and third generation. If off, then couplings can be chosen separately for each generation.

```
parm Zprime:vd (default = -0.693)
vector coupling of d quarks.
```

```
parm Zprime:ad (default = -1.)
axial coupling of d quarks.
```

```
parm Zprime:vu (default = 0.387)
vector coupling of u quarks.
```

```
parm Zprime:au (default = 1.)
axial coupling of u quarks.
```

# Versatile assignment of couplings



### **Extra Gauge Bosons**

#### NewGaugeBoson:ffbar2Wprime = on

[T]here is no equally compelling case for  $W^+-/W'^+-$  interference effects being of importance for discovery, and such interference has therefore not been implemented for now.

The couplings of the  $W'^+$ - are here assumed universal, i.e. the same for all generations. One may set vector and axial couplings freely, separately for the *q qbar'* and the *l nu\_l* decay channels. [...] [F]or simplicity, the same Cabibbo--Kobayashi--Maskawa quark mixing matrix is assumed as for the standard  $W^+$ -. [...]

```
parm Wprime:vq (default = 1.)
vector coupling of quarks.
parm Wprime:aq (default = -1.)
axial coupling of quarks.
parm Wprime:vl (default = 1.)
vector coupling of leptons.
parm Wprime:al (default = -1.)
axial coupling of leptons.
```





A CUMPRIDUD



### FSR of new sector:



- Mediator particles charged under both groups
- ♦ Normal QCD, QED radiation
- Radiation into hidden valley photons (which then decay to SM via mixing with SM gauge bosons
- Radiation into hidden valley gluons which forms hidden sector mesons



# See online manual for:

- ✦ Left-Right models
- ✦ Leptoquarks
- ✦ Compositeness
- $\bullet$  Extra dimensions:
  - Randall-Sundrum
  - Universal ED
  - Large ED
  - Unparticles

Program Methods Sample Main Programs

Setup Run Tasks

Save Settings Main-Program Settings Beam Parameters Random-Number Seed PDF Selection Master Switches Process Selection

- QCD
- -- Electroweak
- Onia
- Тор
- Fourth Generation
- Higgs
- SUSY

#### New Gauge Resons

- -- Left-Right Symmetry
- Leptoquark
- Compositeness
- Hidden Valleys
- Extra Dimensions
- A Second Hard Process

#### Welcome

PYTHIA 8 is the official "cu Specifically, the reliability as the why we encoure PYTHIA 8.1, the used. Further, would be the comparison

#### Documen

On these web documentation sensible defau of beams, proc to the user, e.g an in-depth ph

The overview **A Brief Introd** T. Sjöstrand, S You are strong some details h





ND and P. Skands, Eur. Phys. J. C72 (2012) 2238

# Idea: Space-time + new fermionic co-ordinates = Superspace!

- Writing field theory in this space requires superfields
- Each superfield has both bosonic and fermionic components
- If we write SM using superfields, we get a new "superpartner" for each field





- 6x6 squark matrices allow processes with
  - CP violation
  - Flavour violation
  - R-parity violation

$$\begin{pmatrix} \tilde{u}_{1} \\ \tilde{u}_{2} \\ \tilde{u}_{3} \\ \tilde{u}_{4} \\ \tilde{u}_{5} \\ \tilde{u}_{6} \end{pmatrix} = R^{u} \begin{pmatrix} \tilde{u}_{L} \\ \tilde{c}_{L} \\ \tilde{t}_{L} \\ \tilde{u}_{R} \\ \tilde{c}_{R} \\ \tilde{t}_{R} \end{pmatrix}; \begin{pmatrix} \tilde{d}_{1} \\ \tilde{d}_{2} \\ \tilde{d}_{3} \\ \tilde{d}_{4} \\ \tilde{d}_{5} \\ \tilde{d}_{6} \end{pmatrix} = R^{d} \begin{pmatrix} \tilde{d}_{L} \\ \tilde{s}_{L} \\ \tilde{b}_{L} \\ \tilde{d}_{R} \\ \tilde{s}_{R} \\ \tilde{b}_{R} \end{pmatrix}$$

- Cross sections
  - -Pair production of all strongly charged superparticles
  - -Pair production of Neutralinos and Charginos



# **Production processes**



| Chargino and neutralino production | qqbar2chi0chi0,        |  |
|------------------------------------|------------------------|--|
|                                    | qqbar2chi+-chi0,       |  |
|                                    | qqbar2chi+chi          |  |
| Gaugino squark production          | qg2chi0squark,         |  |
|                                    | qg2chi+-squark.        |  |
| Gluino production                  | gg2gluinogluino,       |  |
|                                    | qqbar2gluinogluino.    |  |
| Squark-gluino production           | qg2squarkgluino        |  |
| Squark-pair production             | gg2squarkantisquark,   |  |
|                                    | qqbar2squarkantisquark |  |
|                                    | qq2squarksquark        |  |
| RPV resonant squark production     | qq2antisquark          |  |

Slepton-pair, neutralino/chargino - gluino currently being validated



# **Sparticle Decays**



• 
$$\tilde{g} \to \tilde{q}_i q_j$$

- $\tilde{\chi}_i^0 \to \tilde{q}_i q_j, \, \tilde{l}_i l_j \, \tilde{\chi}_j^0 Z, \, \tilde{\chi}_j^+ W^-, \, \tilde{\chi}_j^0 H_k, \, \tilde{\chi}_j^+ H^-$
- $\tilde{\chi}_i^+ \to \tilde{q}_i q_j, \, \tilde{l}_i l_j \, \tilde{\chi}_j^+ Z, \, \tilde{\chi}_j^0 W^+, \, \tilde{\chi}_j^+ H_k, \, \tilde{\chi}_j^0 H^+$
- $\tilde{q}_i \to q_j \tilde{\chi}_k^0, \, q_j \tilde{\chi}_k^+, \, \tilde{q}_j Z, \, \tilde{q}_j W^+, \, \tilde{q}_j H_k, \, \tilde{q}_j' H^+$

Three body widths should be supplied via SLHA



# **R-parity violating processes**







# Showering in the presence of BNV



+ finite terms

Case of  $\tilde{\chi}_i^0 \rightarrow u_i d_j d_k$  is similar, with three half-strength dipoles between the quarks



# Showering in the presence of BNV



$$\frac{|M_{Z \to q\bar{q}+g}|^2}{|M_{Z \to q\bar{q}}|^2} = 8\pi\alpha_s C_F \left(\frac{2s_{23}}{s_{2q}s_{3q}} + \frac{s_{2q}}{\hat{s}s_{3q}} + \frac{s_{3q}}{\hat{s}s_{2q}}\right)$$





What about the Higgs sector of SUSY?

# The 2HDM model is automatically initialised using data read in via SLHA

On going SUSY work:

- ➡ Three body decays
- ➡ Validation of remaining decays.
- ➡ Higgs decays to SUSY particles
- ➡ Production of sleptons
- ➡ Production at leptons colliders (for CLIC/ILC studies)



### **Improvements to SLHA interface**

### Was designed for SUSY

```
BLOCK MODSEL # Model selection
    1
           1
               sugra
#
BLOCK SMINPUTS # Standard Model inputs
    1
           1.27934000E+02
                            # alpha em^-1(M Z)^MSbar
     2
                            # G F [GeV^-2]
           1.16637000E-05
                            # alpha S(M Z)^MSbar
     3
          1.1800000E-01
                           # M Z pole mass
     4
          9.11876000E+01
     5
                            # mb(mb)^MSbar
          4.25000000E+00
     6
                            # mt pole mass
          1.75000000E+02
     7
          1.77700000E+00
                            # mtau pole mass
#
BLOCK MINPAR # Input parameters - minimal models
                            # m0
    1
           1.0000000E+02
     2
           2.5000000E+02
                            # m12
     3
          1.0000000E+01
                            # tanb
                            # sign(mu)
     4
          1.0000000E+00
     5
                            # A0
          -1.0000000E+02
```

Problem with designing a generic interface for all BSM models is how to implement arbitrary blocks





|                                  |        | particle ID particle name                                             |  |  |  |
|----------------------------------|--------|-----------------------------------------------------------------------|--|--|--|
| BLOCK                            | QNUMBE | S 7654321 # balleron                                                  |  |  |  |
|                                  | 1      | # 3 times electric charge                                             |  |  |  |
|                                  | 2      | <pre># number of spin states (2S+1)</pre>                             |  |  |  |
|                                  | 3      | <pre># colour rep (1: singlet, 3: triplet, 6: sextet, 8: octet)</pre> |  |  |  |
|                                  | 4      | <pre># Particle/Antiparticle distinction (0=own anti)</pre>           |  |  |  |
| nartiolo namo anti-nartiolo namo |        |                                                                       |  |  |  |
| BLOCK                            | QNUMBE | S 8765432 # yup yupbar                                                |  |  |  |
|                                  | 1      | 2 # 3 times electric charge                                           |  |  |  |
|                                  | 2      | 2 # number of spin states (2S+1)                                      |  |  |  |
|                                  | 3      | # colour rep (1: singlet, 3: triplet, 6: sextet, 8: octet)            |  |  |  |
|                                  | 4      | # Particle/Antiparticle distinction (0=own anti)                      |  |  |  |
| BLOC                             | K MASS |                                                                       |  |  |  |
| #                                | ID c   | de pole mass in GeV                                                   |  |  |  |
|                                  | 7654   | 21 800.0 # m(balleron)                                                |  |  |  |
|                                  | 8765   | $32  600.0  \# \ m(y)$                                                |  |  |  |
| щ                                | 0100   |                                                                       |  |  |  |
| #                                |        | ID WIDIH in Gev                                                       |  |  |  |
| DECA                             | Y 76   | 4321 2.034369169E+00 # balleron decays                                |  |  |  |
| #                                | BR     | NDA ID1 ID2 ID3                                                       |  |  |  |
|                                  | 9.900  | )00000E-01 3 6 5 3 # BR( -> t b s )                                   |  |  |  |
|                                  | 1.000  | )00000E-02 3 4 5 3 # BR(-> c b s )                                    |  |  |  |
|                                  |        |                                                                       |  |  |  |





Use either a **semi-internal process** (your own derived subclass of a Pythia process) to provide production cross section expressions or **read in LHE file** generated externally.

What if you need extra parameters (blocks)?

Pythia provides functionality to retrieve data from arbitrarily named blocks

bool slhaPtr->getEntry(string blockName, double& val); bool slhaPtr->getEntry(string blockName, int indx, double& val); bool slhaPtr->getEntry(string blockName, int indx, int jndx, double& val); bool slhaPtr->getEntry(string blockName, int indx, int jndx, int kndx, double& val);

# In Summary:



- Pythia 8 provides cutting edge support for matching
- Tau polarisation and decays now built-in
- ➡ Many BSM models supported
- Showering/hadronisation with exotic colour states available
- All SUSY production processes relevant for LHC have been implemented.
- Arbitrary BSM models can be implemented by the user.





# Backup



### Param card for merging



! main86.cmnd.
! This file contains commands to be read in for a Pythia8 run.
! Lines not beginning with a letter or digit are comments.

// Number of events generated
Main:numberOfEvents = 1000

// Specify shower options
HadronLevel:all = on
PartonLevel:MPI = on

// Core process for merging
Merging:Process = pp>LEPTONS,NEUTRINOS

// Maximal number of additional L0 jets.
Merging:nJetMax = 2

// Merging scale value.
Merging:TMS = 15

// Switch off enforced rapidity ordering
SpaceShower:rapidityOrder = off

// Since UMEPS is a tree-level merging method, both leading-order and // next-to-neading order PDFs are allowed. However, from parton shower // considerations, leading-order PDFs are preferred, since multiparton // interactions probe the incoming hadron at small momentum scales. // Example PDF files generated with CTEQ6M PDFs. PDF:useLHAPDF = on PDF:LHAPDFset = cteq6m.LHpdf SpaceShower:alphaSvalue = 0.118 TimeShower:alphaSvalue = 0.118



### Param card for SUSY

# **≜UCL**

Beams:idB = 2212
Beams:eCM = 10000.
! 4) Read SLHA spectrum

Beams: idA = 2212

SLHA:file = cmssm.spc
#SLHA:file = sps1aWithDecays.spc

! Sample SLHA1 spectrum for CMSSM-10.1.1

. ! Older example including DECAY tables

! first beam, p = 2212, pbar = -2212

! CM energy of collision

! second beam, p = 2212, pbar = -2212

! 5a) Process selection #SUSY:all = on! Switches on ALL (~400) SUSY processes #SUSY:gq2qluinoqluino = on #SUSY:qqbar2gluinogluino = on #SUSY:qg2squarkgluino = on #SUSY:gg2squarkantisquark = on #SUSY:ggbar2squarkantisquark = on #SUSY:qq2squarksquark = on #SUSY:qqbar2chi0chi0 = on #SUSY:aqbar2chi+-chi0 = on#SUSY:qqbar2chi+chi- = on #SUSY:gg2chi0squark = on #SUSY:qg2chi+-squark = on #SUSY:aabar2chi0aluino = on #SUSY:qqbar2chi+-gluino = on SUSY:qqbar2sleptonantislepton = on ! Optionally select only specific sparticle codes in the final state

! Optionally select only specific sparticle codes in the final sta SUSY:idA = 1000015 ! 0: all SUSY:idB = 1000015 ! 0: all



## Fourth generation quarks: t', b'





# Why is SUSY so popular?



- Loop contribution from bosons and fermions differ in sign. Superpartners would mean a natural cancellation.
- We need new source of CP to explain baryon asymmetry. SUSY has a large sector unexplored with plenty of possibilities.



# Why is SUSY so popular?



- Problem with proton decay due to scalars that carry lepton or baryon number.
  - Solved by introduction of R-parity gives a bonus: provides a natural DM candidate with the right relic density
- $\blacklozenge$  Possibility of getting neutrino masses.

Looks like a cure for all ills, BUT ...