

PHYSICS BEYOND THE STANDARD MODEL WITH PYTHIA 8

Nishita Desai University College London

What is Pythia 8?

- General purpose Monte-Carlo generator
- Simulates collision events: hard process, showering, hadronisation, multiple interactions, underlying event ...
- Version 8.1 released in Oct 2007. Current version 8.175

Download and online manual from <http://home.thep.lu.se/~torbjorn/Pythia.html>

Support for Pythia 6 has stopped!

Full effort to make Pythia 8 better than Pythia 6 in all respects.

Needs more users and feedback.

- ✦ Important to model backgrounds correctly to observe BSM signatures.
- ✦ Current state-of-the-art SM calculations use ME generators + PS with matching followed by hadronisation.
	- ➡ Pythia 8 provides various interfaces to external ME generators
	- ➡ LO/NLO matching for processes available

ME + PS matching at NLO!

10 ¹

1.8 million

UNLOPS

Lonnblad and Prestel; arXiv:1211.7278

ME+PS merging (UMEPS), MLM and CKKW-L. \cup Also available LO matching via new Unitarised

Interfaces

- ✦ Interface to LHAPDF or other external PDF libraries.
- ✦ Les Houches Accord (LHA) files for reading events or runtime LHA interface.
- ✦ Semi-internal processes for programs like Madgraph 5.
- ✦ HepMC output for programs like RIVET, Delphes etc.
- ✦ Can be compiled as a plugin to ROOT.
- ✦ Generalised SLHA input for any BSM model.

Other major improvements:

- ✦ Improvements to parton showers; possibility to use external PS programs (e.g. Vincia)
- ✦ Improvements to MPI
- ✦ Showering to take into account colour-epsilon topologies, sextets.
- ✦ Hadronisation in presence of coloured exotic particles (R-hadrons [*M. Fairbairn et al.,Phys. Rep. 438 (2007)*], long-lived triplets or octets, ...)
-
- ✦ Tau polarisation in both production and decay [*P. Ilten, arXiv:1211.6730 [hep-ph*]]

Example card file

\triangle UC

 $Sample$ p_Y
main01.cc: a simple stud99 r_{am_S}
main02.cc: a simple study of

main03.cc: a simple study of

main04.cc: tests of cross se

topologies, using main04.cm

 $main05$.cc: generation of Q recombination finder and the o

main06.cc: generation of Li

main07.cc:setup a fictitiou body) decay modes to a variet neutrinos. Suitable for astropa

main08.cc: generation of th splitting the run into subruns, ϵ

in the main program or by sub

the selection, compensated by

main09.cc: generation of tw

main10.cc: illustration how

 $main11$.cc: a study of top e currently only contains 100 ev

demonstration of the principle.

and jet analysis.

another program.

events.

✦ Pythia 8 has a basic library of BSM processes that can be used for quick studies.

- BSM Higgses (2HDM)
- Fourth generation quarks
- New Gauge Bosons
- Left-Right symmetric models
- Leptoquarks
- **Compositeness**
- **Hidden Valley**
- Extra Dimensions
- **SUSY**

✦ More exotic processes may be implemented via external programs.

 $^{\circ}$ IIIC

BSM Higgses (2HDM):

Start with two complex Higgs doublets (eight d.o.f.), three are "eaten", left with five: two CP-even, neutral; one CP-odd neutral and pair of charged Higgses.

Many 2HDM possibilities depending on which doublet couples to which fermions.

- Type I: all fermions couple only to second doublet
- Type II: up-type quarks couple to first, down-type and charged leptons to second (like in SUSY)
- Type III: up-type quarks and charged leptons to first, down-type to second
- Type IV: all quarks couple to first, all charged leptons to second.

HiggsBSM:all = on

Common switch for the group of Higgs production beyond the Standard Model

HiggsBSM:ffbar2H1 = on

Scattering *f fbar -> h^0(H_1^0)*, where *f* sums over available flavours except top.

HiggsBSM:gg2H1 = on Scattering *g g -> h^0(H_1^0)* via loop contributions primarily from top.

```
parm HiggsH1:coup2d (default = 1.)
The h^0(0H_1) coupling to down-type quarks.
parm HiggsH1:coup2u (default = 1.)
The h^0(0) 1) coupling to up-type quarks.
parm HiggsH1:coup2l (default = 1.)
The h^0(0H_1) coupling to (charged) leptons.
```

```
parm HiggsH1:coup2Z (default = 1.)
The h^0(0H_1) coupling to Z^0(0).
```

```
parm HiggsH1:coup2W (default = 1.)
The h^0(H_1) coupling to W^+-.
```

```
parm HiggsH1:coup2Hchg (default = 0.)
```
...

```
CPX scenario possible
```
Can be turned on using

mode **HiggsH1:parity** (default = **1**; minimum = 0; maximum = 3) possibility to modify angular decay correlations in the decay of a *h^0(H_1)* decay *Z^0 Z^0* or *W^+ W^-* to four fermions. Currently it does not affect the partial width of the channels, which is only based on the above parameters. option **0** : isotropic decays. option **1** : assuming the *h^0(H_1)* is a pure scalar (CP-even), as in the MSSM. option **2** : assuming the *h^0(H_1)* is a pure pseudoscalar (CP-odd). option **3** : assuming the *h^0(H_1)* is a mixture of the two, including the CP-violating interference term.

Set couplings

 * UCI

Extra Gauge Bosons

NewGaugeBoson:ffbar2gmZZprime = on Scattering *f fbar ->Z'^0*. [..] mode **Zprime:gmZmode** $\text{(default = 0; minimum = 0; maximum = 6)}$ Choice of full *gamma^*/Z^0/Z'^0* structure or not in the above process. [...] option **0** : full *gamma^*/Z^0/Z'^0* structure, with interference included. option **1** : only pure *gamma^** contribution. option **2** : only pure *Z^0* contribution. option **3** : only pure *Z'^0* contribution. option **4** : only the *gamma^*/Z^0* contribution, including interference. option **5** : only the *gamma^*/Z'^0* contribution, including interference. option **6** : only the *Z^0/Z'^0* contribution, including interference.

Can be turned on with full interference with gamma/Z

flag **Zprime:universality** (default = **on**)

If on then you need only set the first-generation couplings below, and these are automatically also used for the second and third generation. If off, then couplings can be chosen separately for each generation.

parm **Zprime:vd** (default = **-0.693**) vector coupling of *d* quarks.

```
parm Zprime:ad (default = -1.)
axial coupling of d quarks.
```
parm **Zprime:vu** (default = **0.387**) vector coupling of *u* quarks.

```
parm Zprime:au (default = 1.)
axial coupling of u quarks.
```
Versatile assignment of couplings

Extra Gauge Bosons

NewGaugeBoson:ffbar2Wprime = on

[T]here is no equally compelling case for *W^+-/W'^+-* interference effects being of importance for discovery, and such interference has therefore not been implemented for now.

The couplings of the *W'^+-* are here assumed universal, i.e. the same for all generations. One may set vector and axial couplings freely, separately for the *q qbar'* and the *l nu_l* decay channels. [...] [F]or simplicity, the same Cabibbo-- Kobayashi--Maskawa quark mixing matrix is assumed as for the standard *W^+-*. [...]

```
parm Wprime:vq (default = 1.)
vector coupling of quarks.
parm Wprime:aq (default = -1.)
axial coupling of quarks.
parm Wprime:vl (default = 1.)
vector coupling of leptons.
parm Wprime:al (default = -1.)
axial coupling of leptons.
```


FSR of new sector:

- ◆ Mediator particles charged under both groups *decay in to SM particles.*
- ◆ Normal QCD, QED radiation
- ◆ Radiation into hidden valley photons (which then decay to SM via mixing with SM gauge bosons
- ✦ Radiation into hidden valley gluons which forms hidden sector mesons

See online manual for:

- ✦ Left-Right models
- ✦ Leptoquarks
- ◆ Compositeness
- ◆ Extra dimensions:
	- Randall-Sundrum
	- Universal ED
	- Large ED
	- **Unparticles**

Program Methods Sample Main Programs

Setup Run Tasks

Save Settings Main-Program Settings Beam Parameters Random-Number Seed **PDF Selection Master Switches Process Selection**

- $-$ QCD
- Electroweak
- Onia
- Top
- **Fourth Generation**
- Higgs
- **SUSY**

New Gauge Bosons

- -- Left-Right Symmetry
- -- Leptoquark
- Compositeness
- **Hidden Valleys**
- **Extra Dimensions**
- Second Hard Proce

Welcome

 \triangle UCI

PYTHIA 8 is th the official "cul Specifically, th reliability as th why we encou PYTHIA 8.1, th used. Further. would be the c

Documen

On these web documentation sensible defau of beams, prod to the user, e.g an in-depth ph

The overview **A Brief Introd** T. Sjöstrand, S You are strong some details h

Idea: Space-time + new fermionic co-ordinates = Superspace!

- ➡Writing field theory in this space requires superfields
- ➡Each superfield has both bosonic and fermionic components
- \blacktriangleright If we write SM using superfields, we get a new "superpartner" for each field

- ✦ 6x6 squark matrices allow processes with handed squarks via a 6 ⇥ 6 complex mixing matrix. Our implementation can therefore be squark matrices allow processes with
	- CP violation
	- Flavour violation
	- R-parity violation

$$
\left(\begin{array}{c}\tilde u_1 \\ \tilde u_2 \\ \tilde u_3 \\ \tilde u_4 \\ \tilde u_5 \\ \tilde u_6\end{array}\right)=R^u\left(\begin{array}{c}\tilde u_L \\ \tilde c_L \\ \tilde t_L \\ \tilde u_R \\ \tilde c_R \\ \tilde t_R\end{array}\right);\left(\begin{array}{c}\tilde d_1 \\ \tilde d_2 \\ \tilde d_3 \\ \tilde d_4 \\ \tilde d_5 \\ \tilde d_6\end{array}\right)=R^d\left(\begin{array}{c}\tilde d_L \\ \tilde s_L \\ \tilde b_L \\ \tilde d_R \\ \tilde s_R \\ \tilde b_R\end{array}\right)
$$

✦ Cross sections

 $\overline{}$

¹ *,* ˜⁺

- -Pair production of all strongly charged superparticles The neutralino mixing matrix *N* is a 4 ⇥ 4 (5 ⇥ 5 in the case of nMSSM) mixing maproduction of all strongly charged superparticles
- -Pair production of Neutralinos and Charginos the diagonalization of the chargino mass matrix from the gauge eigenstates (*iW*+*, H*+) to

Production processes

Slepton-pair, neutralino/chargino - gluino currently being validated

Sparticle Decays ρ_{meas} is foreseen as an update in the near future (and will be announced in the Pythia 88 H update notes). An equivalent mechanism is already implemented in Pythia 8, e.g., for

$$
\bullet \ \tilde{g} \to \tilde{q}_i q_j
$$

- \bullet $\tilde{\chi}_i^0 \to \tilde{q}_i q_j$, $\tilde{l}_i l_j$ $\tilde{\chi}_j^0 Z$, $\tilde{\chi}_j^+ W^-$, $\tilde{\chi}_j^0 H_k$, $\tilde{\chi}_j^+ H^-$
- $\tilde{\chi}_i^+ \rightarrow \tilde{q}_i q_j$, $\tilde{l}_i l_j \tilde{\chi}_j^+ Z$, $\tilde{\chi}_j^0 W^+$ $\tilde{\chi}^+_j H_k, \tilde{\chi}^0_j H^+$
- $\tilde{q}_i \rightarrow q_j \tilde{\chi}_k^0, q_j \tilde{\chi}_k^+, \tilde{q}_j Z, \tilde{q}_j W^+, \tilde{q}_j H_k, \tilde{q}_j'$ $j^{\prime}H^+$

Besides the parity of the strengthen the strengthend the Street of the Street of the Street of Street Street (\sim μ) and ⇤⇤-type couplings (˜*q* ⇥ *q*⇤ *q*⇤⇤). We also include the three-body decays of neutralinos Three body widths should be supplied via SLHA

 $t_{\rm eff}$ \sim type couplings via an intermediate square square square square square states in three states in

R-parity violating processes $\left\langle \left\langle \left\langle \cdot \right\rangle \right\rangle \right\rangle$ is so square-squa EW DIAGRAMS AND THEIR INTERFERENCES. lating processes

conjugate processes (α ⁱq β

Showering in the presence of BNV *<i><u>Z* Showering in the presence of B.</u>

iPRdⁿ

$$
\frac{|M_1|^2}{|M_0|^2} = 4\pi \alpha_s C_F \left[\frac{1}{(N_c - 1)} \left(\frac{2s_{23}}{s_{2q}s_{3q}} + \frac{2s_{12}}{s_{1q}s_{2q}} + \frac{2s_{13}}{s_{1q}s_{3q}} \right) + \frac{s_{2q}}{s_{3q}} + \frac{s_{3q}}{s_{3q}} \right]
$$

+ finite terms

 Γ Case of $\chi_i^{\vee} \to u_i d_j d_k$ is similar, with three half-strength dipoles between the quarks eikonals is half as large as that of the eikonal term in an ordinary *qq*¯ antenna, see, e.g., [27–29]. Case of $\tilde{\chi}^0_i \rightarrow u_i d_j d_k$ is similar, with three half-strength

\mathbf{W} ordinary full-strength radiations, by \mathbf{F} randomly between \mathbf{F} \mathbf{U} \mathbf{C} \mathbf{L} combination, the full pattern when summing the full pattern when summing $\frac{1}{2}$ **Showering in the presence of BNV**

$$
\frac{|M_{Z\to q\bar{q}+g}|^2}{|M_{Z\to q\bar{q}}|^2} = 8\pi\alpha_s C_F \left(\frac{2s_{23}}{s_{2q}s_{3q}} + \frac{s_{2q}}{\hat{s}s_{3q}} + \frac{s_{3q}}{\hat{s}s_{2q}} \right)
$$

the full matrix element by up to a factor ∞ 1.5. That is, the Pythia shower will generate will generate will g
That is, the Pythia shower will generate will generate will generate will generate will generate will generate

What about the Higgs sector of SUSY?

➡ The 2HDM model is automatically initialised using data read in via SLHA

On going SUSY work:

- ➡ Three body decays
- **Validation of remaining decays.**
- ➡ Higgs decays to SUSY particles
- Production of sleptons
- ➡ Production at leptons colliders (for CLIC/ILC studies)

Improvements to SLHA interface

 \triangle UC

Was designed for SUSY

```
BLOCK MODSEL # Model selection
     1 1 sugra 
#
BLOCK SMINPUTS # Standard Model inputs
    1 1.27934000E+02 # alpha em^-1(M Z)^MSbar
    2 1.16637000E-05 # G F [GeV^-2]
    3 1.18000000E-01 # alpha S(M Z)^MSbar
     4 9.11876000E+01 # M_Z pole mass
     5 4.25000000E+00 # mb(mb)^MSbar
    6 1.75000000E+02 # mt pole mass
     7 1.77700000E+00 # mtau pole mass
#
BLOCK MINPAR # Input parameters - minimal models
    1 \t 1.00000000E+02 \t \# m02 2.50000000E+02 \# m12
     3 1.00000000E+01 # tanb 
     4 1.00000000E+00 # sign(mu) 
    5 -1.00000000E+02 # A0
```
Problem with designing a generic interface for all BSM models is how to implement arbitrary blocks

 4×10^{-10} M_{\odot} M_{\odot} M_{\odot} M_{\odot} and M_{\odot} and M_{\odot} and M_{\odot} and M_{\odot} and M_{\odot}

 A lternatively, the parameter $\mathcal{S}_{\mathcal{A}}$:minMass $\mathcal{S}_{\mathcal{A}}$ and $\mathcal{S}_{\mathcal{A}}$

The file should also contain the SLHA block MASS, which must, as a minimum, contain one

sort of q and β and β phenomenology study would not address, by default, therefore, by default, therefore, therefor

Note that the branching ratios (BRs) must sum up to unity, hence zeroing individual

Pythia 8 tries to protect against unintentional overwriting of the SM sector via the flag

 $\mathcal{B}(\mathcal{B})$ is not a good way of switching modes of $\mathcal{B}(\mathcal{B})$ is equipped to interpret a good way of $\mathcal{B}(\mathcal{B})$

negative BR as a mode which is desired switched of for the present run, but which should be present run, but w
In the present run, but which should be present run, but which should be present run, but which should be pres

3.1.2 MASS

3.1.2 MASS

Use either a semi-internal process (your own derived subclass of a Pythia process) to provide production cross section expressions or read in LHE file generated externally.

What if you need extra parameters (blocks)?

those blocks it recognizes (i.e., the standard SLHA 1 α blocks and α blocks and α ➡ Pythia provides functionality to retrieve data from orbitrorihuomod blooko arbitrarily named blocks carbitrarily named blocks

bool slhaPtr->getEntry(string blockName, double& val); bool slhaPtr->getEntry(string blockName, int indx, double& val); bool slhaPtr->getEntry(string blockName, int indx, int jndx, double& val); bool slhaPtr->getEntry(string blockName, int indx, int jndx, int kndx, double& val);

dexed, indexed, indexed, or 3-tensor-indexed, respectively, respectively, respectively, α

blockName, and that the entry value, val, should be interpreted as a double. In fact, the

In Summary:

- ➡ Pythia 8 provides cutting edge support for matching
- ➡ Tau polarisation and decays now built-in
- ➡ Many BSM models supported
- ➡ Showering/hadronisation with exotic colour states available
- **All SUSY production processes relevant for LHC** have been implemented.
- **Arbitrary BSM models can be implemented by** the user.

Backup

Param card for merging

! main86.cmnd. ! This file contains commands to be read in for a Pythia8 run. ! Lines not beginning with a letter or digit are comments. // Number of events generated $Main:numberOfEvents = 1000$ // Specify shower options $HadronLevel: all$ = on PartonLevel:MPI = on // Core process for merging Merging:Process = pp>LEPTONS, NEUTRINOS // Maximal number of additional LO jets. $Merging: nJetMax = 2$ // Merging scale value. $Merging: TMS$ = 15 // Switch off enforced rapidity ordering SpaceShower: rapidityOrder = off // Since UMEPS is a tree-level merging method, both leading-order and // next-to-neading order PDFs are allowed. However, from parton shower // considerations, leading-order PDFs are preferred, since multiparton // interactions probe the incoming hadron at small momentum scales. // Example PDF files generated with CTEQ6M PDFs.

Param card for SUSY

\triangle UCI

Beams:eCM = 10000.

! CM energy of collision ! 4) Read SLHA spectrum

Beams:idA = 2212 \qquad \qquad Beams: $idB = 2212$ $\qquad \qquad$! second beam, $p = 2212$, $pbar = -2212$

SLHA:file = cmssm.spc \blacksquare ! Sample SLHA1 spectrum for CMSSM-10.1.1 #SLHA:file = sps1aWithDecays.spc ! Older example including DECAY tables

! 5a) Process selection #SUSY:all = on ! Switches on ALL (~400) SUSY processes #SUSY:gg2gluinogluino = on #SUSY:qqbar2gluinogluino = on #SUSY:qg2squarkgluino = on #SUSY:gg2squarkantisquark = on #SUSY:qqbar2squarkantisquark = on #SUSY:qq2squarksquark = on #SUSY:qqbar2chi0chi0 = on #SUSY:qqbar2chi+-chi0 = on #SUSY:qqbar2chi+chi- = on #SUSY:qg2chi0squark = on $#SUSY:qq2chi+-square$ = on #SUSY:qqbar2chi0gluino = on #SUSY:qqbar2chi+-gluino = on SUSY:qqbar2sleptonantislepton = on ! Optionally select only specific sparticle codes in the final state

 $SUSY: idA = 1000015$! 0: all $SUSY:idB = 1000015$ $9: all$

Fourth generation quarks: t', b'

flag **FourthBottom:all** (default = **off**)

Common switch for the group of *b'* production. flag **FourthBottom:gg2bPrimebPrimebar** (default = **off**) Scatterings *g g -> b' b'bar*. Code 801. flag **FourthBottom:qqbar2bPrimebPrimebar** (default = **off**) Scatterings *q qbar -> b' b'bar* by gluon exchange. flag **FourthBottom:qq2bPrimeq(t:W)** (default = **off**) Scatterings *q q' -> b' q''* by *t*-channel exchange of a *W^+-* boson. flag **FourthBottom:ffbar2bPrimebPrimebar(s:gmZ)** (default = **off**) Scatterings *f fbar -> b' b'bar* by *s*-channel exchange of a *gamma^*/Z^0* boson. flag **FourthBottom:ffbar2bPrimeqbar(s:W)** (default = **off**) Scatterings *f fbar' -> b' qbar''* by *s*-channel exchange of a *W^+-* boson. Here *q''* is either *u* or *c*. flag **FourthBottom:ffbar2bPrimetbar(s:W)** (default = **off**) Scatterings *f fbar' -> b' tbar* by *s*-channel exchange of a *W^+-* boson. flag **FourthPair:ffbar2tPrimebPrimebar(s:W)** (default = **off**) Scatterings *f fbar' -> t' b'bar* by *s*-channel exchange of a *W^+-* boson. flag **FourthPair:ffbar2tauPrimenuPrimebar(s:W)** (default = **off**) Scatterings *f fbar' -> tau' nu'_taubar* by *s*-channel exchange of a *W^+-* boson. parm **FourthGeneration:VubPrime** (default = **0.001**; minimum = 0.0; maximum = 1.0) The *V_ub'* matrix element in the 4 * 4 CKM matrix. parm **FourthGeneration:VcbPrime** (default = **0.01**; minimum = 0.0; maximum = 1.0) The *V* cb' matrix element in the 4 $*$ 4 CKM matrix. parm **FourthGeneration:VtbPrime** (default = **0.1**; minimum = 0.0; maximum = 1.0) The *V* tb' matrix element in the 4 * 4 CKM matrix. Production, similar for t' **I** parameters

Why is SUSY so popular?

- ➡Loop contribution from bosons and fermions differ in sign. Superpartners would mean a natural cancellation.
- ✦ We need new source of CP to explain baryon asymmetry. SUSY has a large sector unexplored with plenty of possibilities.

Why is SUSY so popular?

- ✦ Problem with proton decay due to scalars that carry lepton or baryon number.
	- ➡Solved by introduction of R-parity gives a bonus: provides a natural DM candidate with the right relic density
- ✦ Possibility of getting neutrino masses.

Looks like a cure for all ills, BUT ...