
1

1 Pythia 8 tutorial

1.1 Introduction

This exercise corresponds to the Pythia 8 part of the more general MC tutorial given at
the MC4BSM workshop at DESY 2013 [2]1. It is for this reason focused on the particular
task within this tutorial, however, should still serve as a good starting point to get familiar
with the basics of how to use the Pythia 8 event generator. Much of these instructions
were based on earlier Pythia 8 tutorials, which can be found on the homepage [5] and
often include additional material than what is covered here.

Within this first exercise it is not possible to describe the physics models used in the
program; for this we refer to the online manual [6], Pythia 8.1 brief introduction [1], to
the full Pythia 6.4 physics description [3], and to all the further references found in them.

Finally, a good way to continue after the tutorial is often to chose a particular physics
study your interest and then start to explore the different simulation and analysis aspects,
using the different example programs together with the online manual, along the lines of
the tutorial.

1.2 Installation and pre-workshop exercise

Pythia 8 is, by today’s standards, a small package. It is completely self-contained, and
is therefore easy to install for standalone usage, e.g. if you want to have it on your own
laptop, or if you want to explore physics or debug code without any danger of destructive
interference between different libraries.

Denoting a generic Pythia 8 version pythia81xx (at the time of writing xx = 62),
here is how to install Pythia 8 on a Linux/Unix/MacOSX system as a standalone package.

1. In a browser, go to
http://www.thep.lu.se/∼torbjorn/Pythia.html

2. Download the (current) program package
pythia81xx.tgz

to a directory of your choice (e.g. by right-clicking on the link).
3. In a terminal window, cd to where pythia81xx.tgz was downloaded, and type

tar xvfz pythia81xx.tgz
This will create a new (sub)directory pythia81xx where all the Pythia source files
are now ready and unpacked.

4. Move to this directory (cd pythia81xx) and do a make. This will take ∼3 min-
utes (computer-dependent). The Pythia 8 libraries are now compiled and ready for
physics.

5. For test runs, cd to the examples/ subdirectory. An ls reveals a list of programs,
mainNN, with NN from 01 through 28 (and beyond). These example programs each
illustrate an aspect of Pythia 8. For a list of what they do, see the “Sample Main
Programs” page in the online manual (point 6 below).

1It is based on last years tutorial, see arxiv.org/abs/arXiv:1209.0297 for description of phsyics process

1.3 On-site exercise 2

In order to test that the program installed successfully, most examples are suitable,
however, for this tutorial (using version 8.175) a good choice would be main11.cc,
which reads in a test LHEF called ttbar.lhe.
To execute this test program, do

make main11
./main11.exe

The output is now just written to the terminal, stdout, and if everything worked
one should see (specific for main11.cc) a text based histogram, showing the a charge
particle multiplicity, at the end of the program output. To save the output to a file
instead, do ./main11.exe > main11.out, after which you can study the test output
at leisure by opening main11.out. See Appendix A for a brief explanation of the
event record.

6. If you use a web browser to open the file
pythia81xx/htmldoc/Welcome.html

you will gain access to the online manual, where all available methods and parameters
are described. Use the left-column index to navigate among the topics, which are then
displayed in the larger right-hand field.

1.3 On-site exercise

The task at hand for the Pythia 8 part of the tutorial is to read in the events, pro-
vided in LHEF format from the earlier steps, and continue the event simulation following
the hard scatter generation. Given that the LHEF includes both the information for ini-
tialization and of the actual events, this is very straight forward. Copy first the LHEF
events_with_decay.lhe.gz (can be downloaded via
wget http://home.thep.lu.se/∼jesper/events_with_decay.lhe.gz) into the examples
directory and unpack it using,

gunzip events_with_decay.lhe.gz
The LHEF should now be readable just like any ASCII file.

The BSM model as well as the hard process is described in detail in the earlier steps of
this tutorial, but as a short reminder the events consists of, pp → UŪ , production at the
LHC with Ecm = 8 TeV. The U fermions have a mass of 500 GeV and the two following
decay scenarios are possible:

U → u Φ1; (1.1)

U → u Φ2 → u e E → u e e Φ1. (1.2)

The second step is to create our own main program. Open a new file mymain.cc in the
examples subdirectory with a text editor, e.g. Emacs. Then type the following lines (here
with explanatory comments added):

// Headers and Namespaces.
#include "Pythia.h" // Include Pythia headers.
using namespace Pythia8; // Let Pythia8:: be implicit.

1.3 On-site exercise 3

int main() { // Begin main program.

// Set up generation.
Pythia pythia; // Declare Pythia object
pythia.readString("Beams:frameType = 4"); // Beam info in LHEF.
pythia.readString("Beams:LHEF = events_with_decay.lhe");
pythia.init(); // Initialize; incoming pp beams is default.

// Generate event(s).
for (int iEvent = 0; iEvent < 1; ++iEvent) {

if (!pythia.next()) {
if (pythia.info.atEndOfFile()) break; // Exit at enf of LHEF.
continue; // Skip event in case of problem.

}
}

pythia.stat(); // Print run statistics.
return 0;

}

This will use one event from the LHEF and pass it through the remaining Pythia 8
simulation. Go through the lines in the program and try to understand them by consulting
the online manual [6].

Next you need to edit the Makefile (the one in the examples subdirectory) so it knows
what to do with mymain.cc. The lines

Create an executable for one of the normal test programs
main00 main01 main02 main03 ... main09 main10 main10 \

and the three next enumerate the main programs that do not need any external libraries.
Edit the last of these lines to include also mymain:

main31 ... main40 mymain: \
Now it should work as before with the other examples:
make mymain
./mymain.exe > mymain.out

whereafter you can study mymain.out, especially the example of a complete event record
(preceded by initialization information and by kinematical-variable listing for the same
event). For this reason Appendix A contains a brief overview of the information stored in
the event record.

At this point you have in principle achieved your goal, the first event in the LHEF
have been fully simulated by Pythia 8, using the default values of all settings. On the
other hand, and despite only having one event, we only have access to the information of
the individual particles in the event record, so interesting for technical validation but not
much of real physics interest yet.

1.4 A simple jet analysis 4

1.4 A simple jet analysis

We will now gradually expand the skeleton mymain program from above, in order to make
a simple analysis, including jet reconstruction. The common standard, used in the experi-
mental communities, is to produce fully simulated MC events in the HepMc format, either for
analysis or further detector simulation. However, in order to keep the software infrastruc-
ture at a minimum we will in this part only use the analysis functionality already available
within Pythia 8. For further information regarding how to produce HepMc, the reader is
referred to the online manual [6] together with other tutorials on the home page [5]. The
final version of mymain.cc, with all steps included, is kept in Appendix B. Hence one can
look there in case the instructions are unclear, however, that should of course be considered
as the last resort, if getting completely stuck.

The BSM events generated in this tutorial will always include jets, from the U decay,
and missing Φ1 particles. They will some times also contain electrons, depending on the
U decay channel. For this reason we start with reconstructing jets from the final state
particles in the event. For this we use the Pythia 8 SlowJet program (found in the manual
under Event Analysis), which is a simpler version of the commonly used FastJet jet finder.
The SlowJet program supports both the kT, anti-kT, and Cambridge/Aachen algorithms,
where we will use the anti-kT which is a common choice within the LHC experiments.
For further information about the jet reconstruction algorithms we recommend the online
manual together with its references to the FastJet program.

Insert the following line before the event loop, in order to create a SlowJet object,
SlowJet sJets(-1, 0.4, 50., 5., 1, 2);

The first argument specifies the anti-kT algorithm, the second is the related R measure
which roughly corresponds to the radius of the jet cone in (y,φ). The next two corresponds
to, minimum pT and maximum |η|, acceptance cuts usually implied by the experiment of
interest. The last two arguments specifies respectively to use all final state particles and
to use their actual mass in the reconstruction. The selection of which particles to include
is normally done more carefully, however, in a trade–off between illustrating the physics
without spending too much time on technical details and infrastructure, we chose a rather
unsophisticated approach here. Just after this line, you should also create the following two
histograms,

Hist nJ("Nr Jets", 10, -0.5, 9.5);
Hist j1pT("Leading Jet pT", 100, 0., 1000.);

which corresponds to our final analysis results.
The next step is to reconstruct jets from the final state particles in each event according

to the jet algorithm we just defined. After that we also want to fill our histograms, once
per event, and at the end of the program print them to our output. To do this, include
the following lines inside the event loop, but at the end so that pythia.next() has been
executed,

// Jet analysis.
if (sJets.analyze(pythia.event)) {

nJ.fill(sJets.sizeJet());

1.4 A simple jet analysis 5

if(sJets.sizeJet() > 0)
j1pT.fill(sJets.pT(0));

}

The pythia member .event corresponds to the event record and you can try to find out the
meaning of these lines by using the online manual. To write the histograms to the output
include the following line at the very end, just before the return statement,

std::cout « nJ « j1pT;

Now increase the number of events in the event loop, e.g. to 1000, compile and run the
program. At the end of the output one should now see the number of jets and leading jet
pT distributions, in traditional text based histograms.

During the run you may receive problem messages. These come in three kinds:
• a warning is a minor problem that is automatically fixed by the program, at least

approximately;
• an error is a bigger problem, that is normally still automatically fixed by the program,

by backing up and trying again;
• an abort is such a major problem that the current event could not be completed; in

such a rare case pythia.next() is false and the event should be skipped.
Thus the user need only be on the lookout for aborts. During event generation, a problem
message is printed only the first time it occurs. The above-mentioned pythia.stat() will
then tell you how many times each problem was encountered over the entire run.

What we did so far is clearly not what we want to do, since first we include the Φ1

which should be invisible and second the electrons produced in the decay chains, potentially
also with high pT , are included.

For the purpose of this tutorial we use a rather ugly trick in order to eliminate particles
with respect to the jet reconstruction. We simply loop through the event record and when we
find a Φ1 (id == 9000006) we set its status to a negative value, since the jet reconstruction
only considers final state particles, i.e. with positive status. In order to do this, insert the
following lines, just before the jet analysis part,

for (int iPart = 0; iPart < pythia.event.size(); ++iPart) {
if (pythia.event[iPart].idAbs() == 9000006) {

int stat = pythia.event[iPart].status();
if (stat > 0) pythia.event[iPart].status(-stat);

}
}

These lines hence illustrate both how to loop over the particles in the event record and how
to access their properties, in this case the id and status codes. Now compile and run the
program again. The mean number of jets should now have been reduced by approximately
two (from 4.8 to 3.1), due to the two Φ1 in the events. The leading pT jet should now
dominantly originate from the quarks in the U decay and the mean pT therefore is around
half of the U mass, 500 GeV.

1.5 The event record 6

We now leave it as an exercise to also eliminate any final state electrons in the event
and see how the distributions are affected. Another easy thing to investigate would be to
see how the number of reconstructed jets varies with the minimum pT requirement specified
for the jet finder.

1.5 The event record

The event record is set up to store every step in the evolution from an initial low-multiplicity
partonic process to a final high-multiplicity hadronic state, in the order that new particles
are generated. The record is a vector of particles, that expands to fit the needs of the current
event (plus some additional pieces of information not discussed here). Thus event[i] is
the i’th particle of the current event, and you may study its properties by using various
event[i].method() possibilities.

The event.list() listing provides the main properties of each particles, by column:
• no, the index number of the particle (i above);
• id, the PDG particle identity code (method id());
• name, a plaintext rendering of the particle name (method name()), within brackets

for initial or intermediate particles and without for final-state ones;
• status, the reason why a new particle was added to the event record (method
status());
• mothers and daughters, documentation on the event history (methods mother1(),
mother2(), daughter1() and daughter2());
• colours, the colour flow of the process (methods col() and acol());
• p_x, p_y, p_z and e, the components of the momentum four-vector (px, py, pz, E), in

units of GeV with c = 1 (methods px(), py(), pz() and e());
• m, the mass, in units as above (method m()).

For a complete description of these and other particle properties (such as production and
decay vertices, rapidity, p⊥, etc), open the program’s online documentation in a browser
(see Section 1.2, point 6, above), scroll down to the “Study Output” section, and follow the
“Particle Properties” link in the left-hand-side menu. For brief summaries on the less trivial
of the ones above, read on.

1.5.1 Identity codes

A complete specification of the PDG codes is found in the Review of Particle Physics [7].
An online listing is available from

http://pdg.lbl.gov/2008/mcdata/mc_particle_id_contents.html
A short summary of the most common id codes would be

1.5 The event record 7

1 d 11 e− 21 g 211 π+ 111 π0 213 ρ+ 2112 n

2 u 12 νe 22 γ 311 K0 221 η 313 K∗0 2212 p

3 s 13 µ− 23 Z0 321 K+ 331 η′ 323 K∗+ 3122 Λ0

4 c 14 νµ 24 W+ 411 D+ 130 K0
L 113 ρ0 3112 Σ−

5 b 15 τ− 25 H0 421 D0 310 K0
S 223 ω 3212 Σ0

6 t 16 ντ 431 D+
s 333 φ 3222 Σ+

Antiparticles to the above, where existing as separate entities, are given with a negative
sign.
Note that simple meson and baryon codes are constructed from the constituent (anti)quark
codes, with a final spin-state-counting digit 2s+ 1 (K0

L and K0
S being exceptions), and with

a set of further rules to make the codes unambiguous.

1.5.2 Status codes

When a new particle is added to the event record, it is assigned a positive status code that
describes why it has been added, as follows:

code range explanation
11 – 19 beam particles
21 – 29 particles of the hardest subprocess
31 – 39 particles of subsequent subprocesses in multiparton interactions
41 – 49 particles produced by initial-state-showers
51 – 59 particles produced by final-state-showers
61 – 69 particles produced by beam-remnant treatment
71 – 79 partons in preparation of hadronization process
81 – 89 primary hadrons produced by hadronization process
91 – 99 particles produced in decay process, or by Bose-Einstein effects

Whenever a particle is allowed to branch or decay further its status code is negated (but it
is never removed from the event record), such that only particles in the final state remain
with positive codes. The isFinal() method returns true/false for positive/negative
status codes.

1.5.3 History information

The two mother and two daughter indices of each particle provide information on the history
relationship between the different entries in the event record. The detailed rules depend on
the particular physics step being described, as defined by the status code. As an example,
in a 2→ 2 process ab→ cd, the locations of a and b would set the mothers of c and d, with
the reverse relationship for daughters. When the two mother or daughter indices are not
consecutive they define a range between the first and last entry, such as a string system
consisting of several partons fragment into several hadrons.

There are also several special cases. One such is when “the same” particle appears as
a second copy, e.g. because its momentum has been shifted by it taking a recoil in the
dipole picture of parton showers. Then the original has both daughter indices pointing to
the same particle, which in its turn has both mother pointers referring back to the original.

1.6 The jet analysis program 8

Another special case is the description of ISR by backwards evolution, where the mother
is constructed at a later stage than the daughter, and therefore appears below in the event
listing.

If you get confused by the different special-case storage options, the two pythia.event.motherList(i)
and pythia.event.daughterList(i) methods are able to return a vector of all mother
or daughter indices of particle i.

1.5.4 Color flow information

The colour flow information is based on the Les Houches Accord convention [8]. In it, the
number of colours is assumed infinite, so that each new colour line can be assigned a new
separate colour. These colours are given consecutive labels: 101, 102, 103, A gluon
has both a colour and an anticolour label, an (anti)quark only (anti)colour.

While colours are traced consistently through hard processes and parton showers, the
subsequent beam-remnant-handling step often involves a drastic change of colour labels.
Firstly, previously unrelated colours and anticolours taken from the beams may at this stage
be associated with each other, and be relabeled accordingly. Secondly, it appears that the
close space–time overlap of many colour fields leads to reconnections, i.e. a swapping of
colour labels, that tends to reduce the total length of field lines.

1.6 The jet analysis program

This is the final mymain.cc at the end of the tutorial,

#include "Pythia.h" // Include Pythia headers.
using namespace Pythia8; // Let Pythia8:: be implicit.

int main() { // Begin main program.

// Set up generation.
Pythia pythia; // Declare Pythia object
pythia.readString("Beams:frameType = 4"); // Beam info in LHEF.
pythia.readString("Beams:LHEF = events_with_decay.lhe");
pythia.init(); // Initialize; incoming pp beams is default.

SlowJet sJets(-1, 0.4, 50., 5., 1, 2);
Hist nJ("Nr Jets", 10, -0.5, 9.5);
Hist j1pT("Leading Jet pT", 100, 0., 1000.);

// Generate event(s).
for (int iEvent = 0; iEvent < 1000; ++iEvent) {

if (!pythia.next()) {
if (pythia.info.atEndOfFile()) break; // Exit at enf of LHEF.
continue; // Skip event in case of problem.

}

REFERENCES 9

// Loop through event record.
for (int iPart = 0; iPart < pythia.event.size(); ++iPart) {

if (pythia.event[iPart].idAbs() == 9000006) {
int stat = pythia.event[iPart].status();
if (stat > 0) pythia.event[iPart].status(-stat);

}
if (pythia.event[iPart].idAbs() == 11) {

int stat = pythia.event[iPart].status();
if (stat > 0) pythia.event[iPart].status(-stat);

}
}

// Jet analysis.
if (sJets.analyze(pythia.event)) {

nJ.fill(sJets.sizeJet());
if (sJets.sizeJet() > 0)

j1pT.fill(sJets.pT(0));
}

}
pythia.stat(); // Print run statistics.

std::cout << nJ << j1pT;

return 0;
}

References

[1] T. Sjostrand, S. Mrenna and P. Z. Skands, “A Brief Introduction to PYTHIA 8.1,” Comput.
Phys. Commun. 178, 852 (2008) [arXiv:0710.3820 [hep-ph]].

[2] http://www.phys.ufl.edu/∼matchev/mc4bsm6/

[3] T. Sjostrand, S. Mrenna and P. Z. Skands, “PYTHIA 6.4 Physics and Manual,” JHEP 0605,
026 (2006) [hep-ph/0603175].

[4] http://physics.ucdavis.edu/∼conway/research/software/pgs/pgs4-general.htm.

[5] http://www.thep.lu.se/∼torbjorn/Pythia.html

[6] The Pythia 8 online manual is both available on the home page [5] (for the current version)
as well as distributed together with the source code, e.g. open the file
pythia81xx/htmldoc/Welcome.html in a browser, as discussed in section 2.

http://www.phys.ufl.edu/~matchev/mc4bsm6/
http://physics.ucdavis.edu/~conway/research/software/pgs/pgs4-general.htm
http://www.thep.lu.se/~torbjorn/Pythia.html

REFERENCES 10

[7] C. Amsler et al. [Particle Data Group Collaboration], “Review of Particle Physics,” Phys.
Lett. B 667, 1 (2008).

[8] E. Boos et al., in the Proceedings of the Workshop on Physics at TeV Colliders, Les Houches,
France, 21 May - 1 Jun 2001 [hep-ph/0109068]

	Pythia 8 tutorial
	Introduction
	Installation and pre-workshop exercise
	On-site exercise
	A simple jet analysis
	The event record
	Identity codes
	Status codes
	History information
	Color flow information

	The jet analysis program

