
1

Roadmap Future

GPU Computing

Axel Koehler
Sr. Solution Architect HPC

2

Continued Demand for Compute Power

Comprehensive Earth

System Model at

1KM scale, enabling

modeling of cloud

convection and ocean

eddies.

Coupled simulation of

entire cells at

molecular, genetic,

chemical and

biological levels.

First-principles

simulation of

combustion for new

high-efficiency, low-

emision engines.

Predictive calculations

for thermonuclear and

core-collapse

supernovae, allowing

confirmation of

theoretical models.

3

Power Crisis in (Super)computing

1982 1996 2008 2020

Exaflop

Petaflop

Teraflop

Gigaflop

8,200,000 Watts

25,000,000 Watts

850,000 Watts

60,000 Watts

Titan

ORNL

12,600,000 Watts

K-

Computer

4

Multi-core CPUs

Industry has gone multi-core as a first response to

power issues

Performance through parallelism, not frequency

Less than 2% of chip power today goes to flops.

But CPUs are fundamentally designed for single

thread performance rather than energy efficiency

Fast clock rates with deep pipelines

Data and instruction caches optimized for latency

Superscalar issue with out-of-order execution

Lots of predictions and speculative execution

Lots of instruction overhead per operation

5

CPUs: designed to

run a few tasks

quickly.

GPUs: designed

to run many tasks

efficiently.

Accelerated Computing

Add GPUs: Accelerate Applications

6

Fixed function hardware

Transistors are primarily devoted to data processing

Less leaky cache

SIMT thread execution

Groups of threads formed into warps which always executing

same instruction

Some threads become inactive when code path diverges

Cooperative sharing of units with SIMT

eg. fetch instruction on behalf of several threads or read

memory location and broadcast to several registers

Lack of speculation reduces overhead

Minimal Overhead

Hardware managed parallel thread execution and handling of

divergence

D
R

A
M

 I
/F

H

o
s

t
I/

F

G
ig

a
 T

h
re

a
d

D

R
A

M
 I

/F
 D

R
A

M
 I/F

D

R
A

M
 I/F

D

R
A

M
 I/F

D

R
A

M
 I/F

L2

Energy efficient GPU
Performance = Throughput

7

Overarching Goals for GPU Computing

Ease of

Programming

And Portability

Application

Space

Coverage

Power

Efficiency

8

GPU Roadmap

2012 2014 2008 2010

D
P
 G

F
L
O

P
S
 p

e
r

W
a
tt

Kepler

Tesla

Fermi

Maxwell

Volta
Stacked DRAM

Unified Virtual Memory

Dynamic Parallelism

FP64

CUDA

32

16

8

4

2

1

0.5

9

Kayla Development Platform

Kepler-class GPU
SM35 → adds dynamic parallelism and other features

2 SMX, 384 CUDA cores

Comes in MXM and PCIe form factor

Capability approaching Logan SoC (Integrated solution will
be more power-efficient)

CUDA and OpenGL 4.3 support

Carrier board: Seco mini-ITX GPU devkit
NVidia Tegra 3 CPU on Q7 module

NVidia PCIe GPU (eg. gf108, gk107, gk104, and Kayla GPU)

Carrier provides I/O connectors (eg. Gigabit, SATA, USB)

https://developer.nvidia.com/kayla-platform

https://developer.nvidia.com/kayla-platform
https://developer.nvidia.com/kayla-platform
https://developer.nvidia.com/kayla-platform

10

 CUDA on ARM roadmap

Software

CUDA releases starting with CUDA 5.5 and 319.xy include ARM support

Native ARM compiler architecture (no longer x86 cross development
needed)

cuda-gdb: native ARM and client-server

Long term plans for CUDA on the ARM platform

Logan, Tegra with integrated Kepler class GPU

ARMv8 64-bit platform support, starting with Parker

Enable other partners and industry support

11

Which Takes More Energy?

Performing a 64-bit floating-point FMA:

893,500.288914668

 43.90230564772498

= 39,226,722.78026233027699

+ 2.02789331400154

= 39,226,724.80815564

Or moving the three 64-bit operands 20

mm across the die:

This one takes over 4.7x the energy today (40nm)!

Loading the data from off chip takes >> 100x the energy.

It’s getting worse: in10nm, relative cost will be 17x!

12

Power is the problem

 20mm

64-bit DP
20pJ 26 pJ 256 pJ

1 nJ

28nm

256-bit
buses

16 nJ
DRAM
Rd/Wr

256-bit access
8 kB SRAM

50 pJ

Fetching operands costs more than computing on them

13

What is important for the future?

• Its not about the FLOPS

• Its about data movements

• Algorithms should be designed to perform more work per unit data

movement

• Programming systems should further optimize this data movement

• Architectures should facilitate this by providing an exposed hierarchy

and efficient communication

14

Ways to Accelerate Applications

Libraries Directives
(OpenACC)

Programming

Languages
(CUDA, ..)

Applications

Easiest Approach Maximum

Performance

High Level

Languages

(Matlab, ..)

No Need for

Programming Expertise

CUDA Language is

interoperable with OpenACC

CUDA Libraries are

interoperable with OpenACC

15

Unified Virtual Addressing
Easier to Program with Single Address Space

No UVA: Multiple Memory Spaces

UVA : Single Address Space

System

Memory

CPU GPU0

GPU0

Memory

GPU1

GPU1

Memory

System

Memory

CPU GPU0

GPU0

Memory

GPU1

GPU1

Memory

PCI-e PCI-e

0x0000

0xFFFF

0x0000

0xFFFF

0x0000

0xFFFF

0x0000

0xFFFF

GPU

Unified Runtime Interface

__global__ void B(float *data)
{
 do_stuff(data);

 X <<< ... >>> (data);
 Y <<< ... >>> (data);
 Z <<< ... >>> (data);
 cudaDeviceSynchronize();

 do_more_stuff(data);
}

A

B

C

X

Y

Z

CPU int main() {
 float *data;
 setup(data);

 A <<< ... >>> (data);
 B <<< ... >>> (data);
 C <<< ... >>> (data);

 cudaDeviceSynchronize();
 return 0;
}

main

Dynamic Parallelism

© 2013 NVIDIA

void sortfile(FILE *fp, int N) {

 char *data = (char*)malloc(N);

 char *sorted = (char*)malloc(N);

 fread(data, 1, N, fp);

 parallel_sort<<< ... >>>(sorted, data, N);

 use_data(sorted);

 free(data); free(sorted);

}

 char *d_data, *d_sorted;

 cudaMalloc(&d_data, N);

 cudaMalloc(&d_sorted, N);

 cudaMemcpy(d_data, data, N, ...);

 cudaMemcpy(sorted, d_sorted, N, ...);

 cudaFree(d_data);

 cudaFree(d_sorted);

Unified Virtual Memory

© 2013 NVIDIA

void sortfile(FILE *fp, int N) {

 char *data = (char*)malloc(N);

 char *sorted = (char*)malloc(N);

 fread(data, 1, N, fp);

 parallel_sort<<< ... >>>(sorted, data, N);

 use_data(sorted);

 free(data); free(sorted);

}

 char *d_data, *d_sorted;

 cudaMalloc(&d_data, N);

 cudaMalloc(&d_sorted, N);

 cudaMemcpy(d_data, data, N, ...);

 cudaMemcpy(sorted, d_sorted, N, ...);

 cudaFree(d_data);

 cudaFree(d_sorted);

Unified Virtual Memory

© 2013 NVIDIA

1.0 2.0 3.0 4.0 5.0

C++
Dynamic

Parallelism

C

Device Code

Linking NVCC

Fortran (PGI)

cuda-memcheck

Nsight

Eclipse Ed.

Detect

Shared Memory

Hazards

cuBLAS

Device API
1000+ new NVPP

functions

cuBLAS

cuFFT

Thrust

cuRand

cuSparse

LLVM

New Visual

Profiler

GPU-Aware

MPI

C++ new/delete

Virtual functions

Templates

UVA

nvidia-smi

GPUDirect

Recursion

cuda-gdb

Visual Profiler

Command-

Line Profiler

NVPP

Nsight IDE

OpenACC

Inheritance

Function pointers

 Platform for Parallel Computing

Compiler
Tool Chain

Programming
Languages

Libraries

Developer
Tools

Platform

© 2013 NVIDIA

5.0

 Platform for Parallel Computing

JIT

Linking

JIT

Compilation

Profiler

Step-by-Step Guidance Single-GPU Debugging

Multi-GPU Support ARM Support

Compiler
Tool Chain

Programming
Languages

Libraries

Developer
Tools

C++11

Sparse Solvers

Platform

21

CUDA Compiler Contributed to Open Source LLVM

Developers want to build

front-ends for

Java, Python, R, DSLs

Target other processors like

ARM, FPGA, GPUs, x86

CUDA
C, C++, Fortran

LLVM Compiler
For CUDA

NVIDIA
GPUs

x86
CPUs

New Language
Support

New Processor
Support

CUDA Runtime

CUDA Driver Host Compiler

Open Compiler Architecture

NVCC

PTXAS

PTX

NVPTX CodeGen

LLVM Optimizer

CUDA FE

.cu

Open

Sourced

NVVM IR
libNVVM

libCUDA.LANG

https://developer.nvidia.com/cuda-llvm-compiler

Scenarios for the Compiler SDK

NVCC

CUDA Runtime

Open

ACC

CUDA

Fortran

libNVVM

libCUDA.

LANG

Building Production

Quality Compilers

NVCC

CUDA Runtime

x86

CUDA

Runtime

x86 LLVM

Backend

libNVVM

libCUDA.

LANG

Enabling Other

Platforms

NVCC

CUDA Runtime

DSL

Runtime

libNVVM

DSL

Front

End

libCUDA.

LANG

Building Domain

Specific Languages (DSL)

MATLAB

JET

HALIDE

Enabling Research in GPU Computing

Custom Runtime

x86 LLVM

Backend
libNVVM

CLANG’

CU++

 OpenACC Directives

Program myscience

 ... serial code ...

!$acc region

 do k = 1,n1

 do i = 1,n2

 ... parallel code ...

 enddo

 enddo

!$acc end region

 ...

End Program myscience

CPU GPU

Your original

Fortran or C code

Easy, Open, Powerful

• Simple Compiler hints

• Works on multicore CPUs & many core

GPUs

• Compiler Parallelizes code

• Future Integration into OpenMP

standard planned

OpenACC

Compiler

Hint

http://www.openacc.org

http://www.openacc-standard.org/

26

 Proposed Additions for OpenACC 2.0

http://www.openacc.org

Address ambiguities in existing spec

List of 30+ features to be added

Nested parallelism

Separate compilation

Function calls

Data directives for control, unstructured
data, deep copy for C++ structures, non-
contiguous memory

Multiple devices

Profiling interface

Certification – OpenACC test suite

http://www.openacc.org/

© 2013 NVIDIA

Ubiquitous

parallel

programming

Power

Aware

Programming

Hybrid

operating

system

Enablement

Parallel

Compiler

Foundation

Enablement

Optimizing

locality and

computation

Task, Thread

& Data

Parallelism

 Today
Easier

Parallel

Programming

 Summary

28

Thank you.

Questions?

Axel Koehler
akoehler@nvidia.com

