

GPGPU projects in Wuppertal

Workshop on GPUs, Hamburg 16.04.2013

Thijs Cornelissen, Sebastian Fleischmann, Peter Maettig, Manuel Neumann

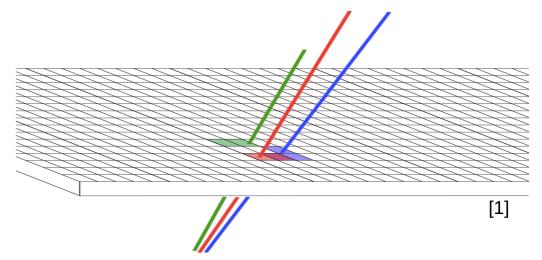
Bergische Universität Wuppertal

Projects for GPGPU processing

- Overall goal: Gain experience in parallelisation of algorithms in ATLAS offline reconstruction
- 1st **Project:** Cluster splitting with neural networks
 - NN implementation in Toolkit for Multivariate data Analysis (TMVA, [0]) on GPUs
 - Collaboration with FH Niederrhein (P. Ueberholz)
 - Preparation of measured data as input for track reconstruction
- 2nd Project: Track fitting
 - Collaboration with FH Muenster (N. Wulff)
 - Fit track seeds to measurements
 - Multi Track Fitter
 - Kalman filter
 - Global X² fitter

1st **Project:** Cluster Splitting using neural networks

- · Close by particles leave charge clusters in pixel detector that may overlap
- Previous cluster seeking method did not solve the issue of accidentally merged clusters
- Merged clusters will reduce tracking performance
 - Too many shared measurements will lead to rejection of tracks
 - Resolution decreases due to less precise reconstructed objects
- New approach uses charge distribution to split clusters according to estimated track count
- A neural networks calculates probability that a cluster is caused by multiple particles

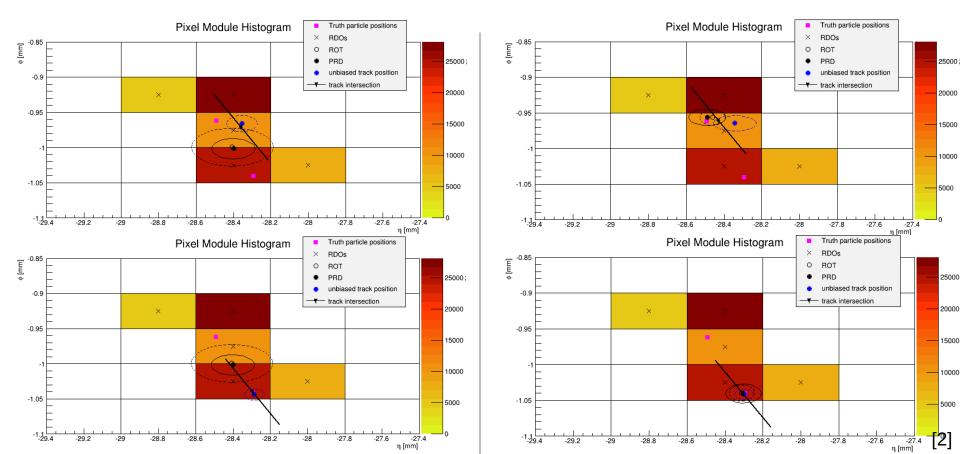


New cluster splitting

- Uses charge information of single pixels in cluster
 - Estimate number of passing tracks of cluster
 - " " position of each track
 - " uncertainty of measurement
- Inputs:
 - 7x7 pixel information centred using charge weights
 - Longitudinal length of pixel cell
 - Estimated track direction (angle to surface normal)
- Multi Layer Perceptron (MLP) with
 - 3 output nodes (1 for each number of tracks)
 - about 60 input variables
- Try to use GPUs for network training
 - Parallelise weight calculation
 - Train different networks in parallel
 - Starting from GPU-based (CUDA) MLP implementation in TMVA from Edinburgh [SOURCE]
 - Extension to multiple output nodes
 - Rewrite in OpenCL

Cluster splitting performance (I)

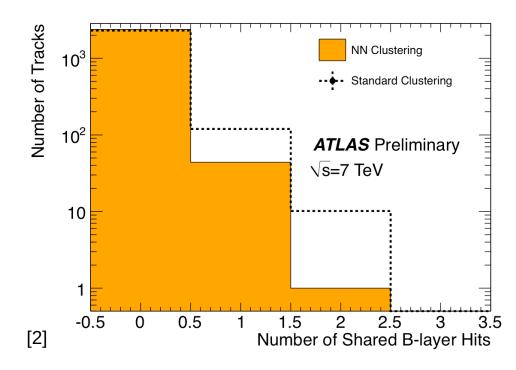
- Compare old (left) to new (right) clustering:
 - Reconstructed objects (black dots at Φ =-1) give intermediate and therefore worse input for track reconstruction
 - · New approach separates the hits and with this increases resolution for track reconstruction



Cluster Cluster splitting performance (II)

- Shared measurements in the innermost pixel detector layer
 - Dashed line shows old clustering
 - Orange filled area NN approach

- Clearly the tracks share less hits
 - Results in better track resolution
 - Less tracks will be rejected



Preliminary results from GPU implementation

- Implementation of the NN that estimates the number of particles (3 outputs nodes)
- Serial CPU only vs. CUDA
- CUDA implementation lacks static input nodes (bias)
- Physical results not checked, yet
- Large net: 95604 events
 - 61 input variables
 - 64 neurons and 4160 synapses
 - 3 output nodes
- Small net: 6k events
 - 4 input variables
 - 19 neurons and 45 synapses
 - 1 output node

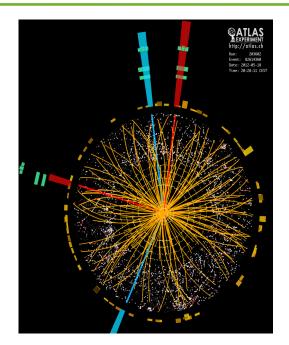
	GeForce GTX 570	Intel Core i7- 2600s
Clock rate [GHz]	1.464	2.8 (3.8)
Memory Bandwidth [GB/sec]	152	21
Cores [int]	480	4 (HT)

Training time for different nets

	Large net	Small net
MLP	14.97 h	14.3 s
MLP (CUDA)	24.3 m	87.2 s

2nd Project: Track fitting issues

- Number of tracks O(1000) per event
 - Current framework fits tracks one by one
- Combinatorics in measurement assignment
 - Finding track seeds: see talk of J. Mattmann (here I deal only with fitting of tracks)
 - Ambiguity solving during fit (shared measurements, duplicate/ghost seeds)
- Track fitting takes around 18 % CPU time of the reconstruction process
 - Needs precise geometry and magnetic field map
 - High fraction for solving ambiguities
 - Standard fitter (GlobalChi2Fitter) deals with matrices of O(50x50)

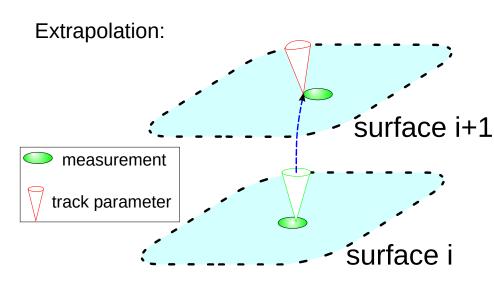


Update track fitting algorithms

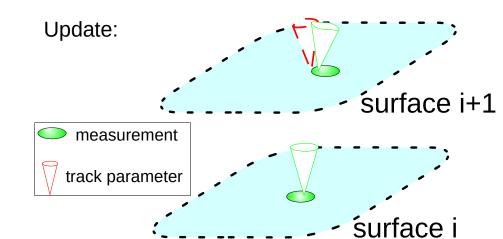
- Goals
 - reduce computing time
 - More efficient usage of current and future hardware
 - Improve physics performance in dense track environments (boosted jets)
- Ideas
 - Fit many tracks at once
 - Algorithm that solve measurement ambiguities intrinsically (see next slides)
 - Use vector architectures
- Boundary Conditions
 - Track fitting needs precise detector geometry and magnetic field information
 - No port of whole reconstruction framework (lack of manpower)

Basic tool: Kalman Filter

- Procedure
 - Extrapolate track parameters to next surface
 - Combine track parameters with corresponding measurement
 - Extrapolate updated track parameters to next layers



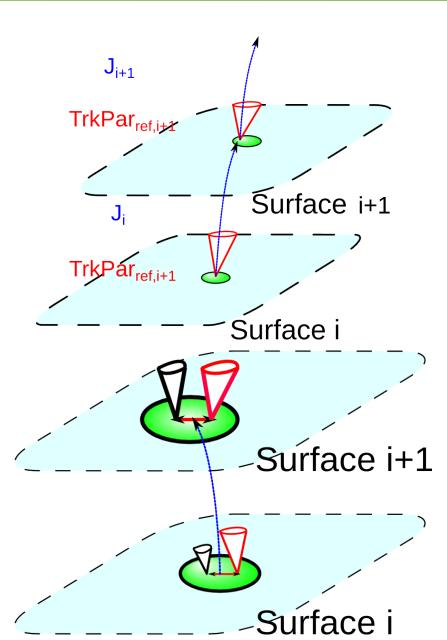
- Can be done inside out (fine to coarse detector) and vice versa
- Iterative approach does not need full geometry information in every step



11 of 16

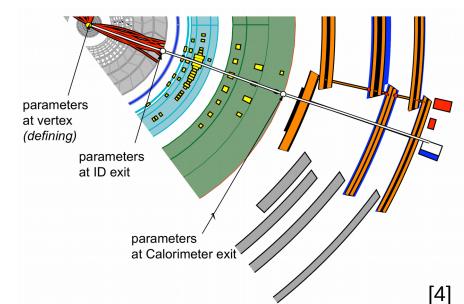
Reference fit method

- Extension of the Kalman filter
- Linearisation around seed
- Initialisation:
 - Do a full Kalman fit without including the measurement parameters
 - Store transport Jacobian J matrices and track parameters TrkPar_{ref} of this fit
- Fit:
 - Propagate difference of track parameters to measurement with the transport Jacobians $\Delta x_{i+1}^{pred} = J_i \Delta x_i$
 - Correct prediction with measurement parameters



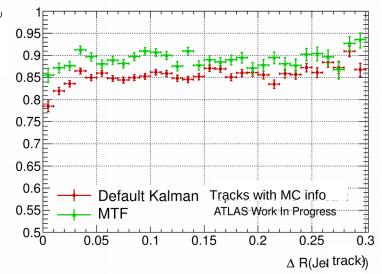
Reasons for the reference fit method

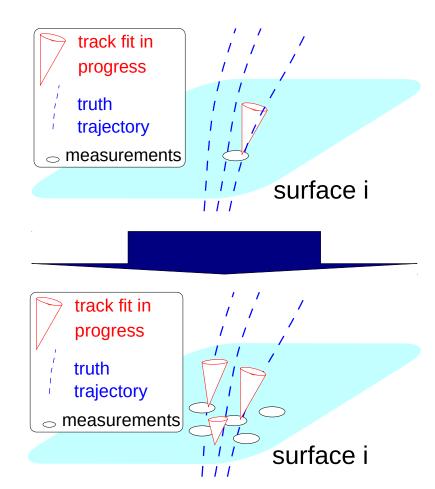
- Higher stability related to numerics and material effects
 - Special w.r.t. detector geometry and features
 - precise (ID) and coarse subsystems (muon spectrometer)
 - magnetic field
- no detector geometry after the first fit iteration needed
 - No database lookup in every iteration
- Matrix operations should be done fast on GPUs and SIMD units
- This allows data parallel (multiple tracks at once) processing



Multi Track Fitter

- Based on "adaptive multi track fitting" by A. Strandlie, R. Frühwirth [5]
- Idea:
 - Combine information of multiple track candidates
 - Loose assignment of measurements at the beginning of fit process
 - Inherent ambiguity processing of measurement to track assignment

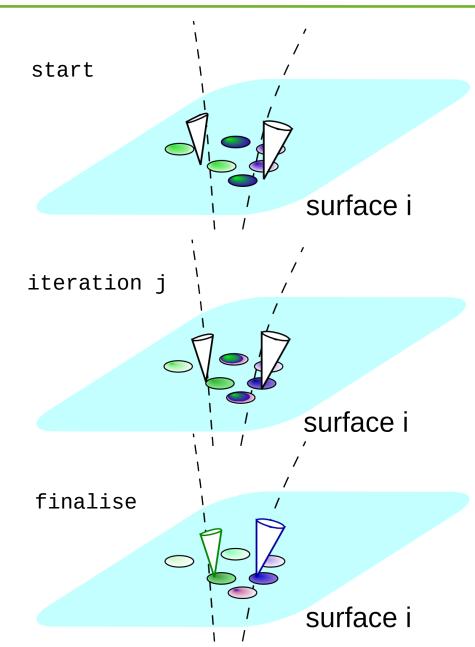




14 of 16

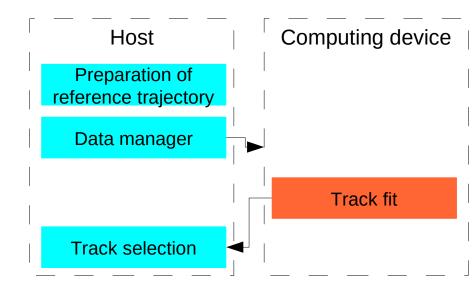
Multi Track Fitter - Principle

- Extension of the Kalman Filter:
 - Assign a weight to every measurement for every considered track
 - In every iteration of the MTF:
 - Decrease a temperature parameter that goes into the calculation of the weight (Low values for temperature cause a hard cut off)
 - Proceed with the Kalman filter
 - Selection: In the last iteration a single measurement will be assigned to a track



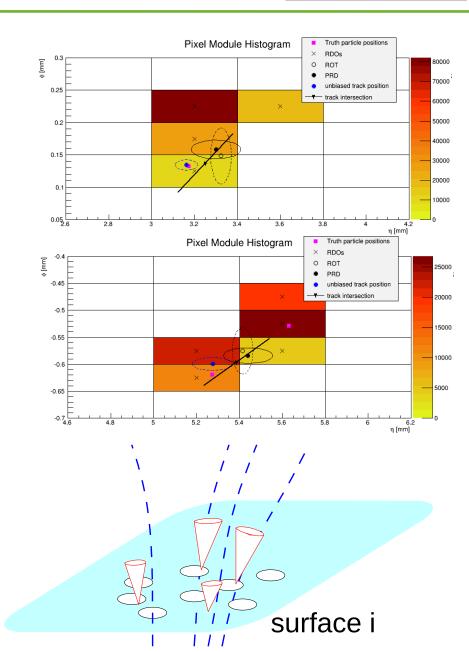
Multi Track Fitter – the whole package

- Use Kalman filter with reference method
- Fill reference trajectory and assignment weights at the beginning
- Transfer trajectories and track seeds to computing device
- Fit predictions to measurements
 - only updates present information
 - Mostly matrix/vector operations (suitable for SIMD/GPU computing units
- Transfer back to host and do track selection



Summary

- Projects related to track reconstruction ongoing:
 - Neural networks to improve measurement information
 - Track fitter to gain from current (SIMD) and future (GPU) hardware
 - · Will speed up fitting
 - Collaboration with FH Niederrhein/Muenster and Wuppertal's department of electrical engineering (CUDA Research Center)
 - Funding for GPU cluster (48 NVIDIA Tesla M2090 Modules) granted, but main user will be dept. of EE



16 of 16

Bibliography	
[0]	Acceleration of multivariate analysis techniques in TMVA using GPUs A. Hoecker, H. McKendrick, J. Therhaag, A. Washbrook
[1]	Neural network based cluster creation in the ATLAS silicon Pixel Detector, Andreazza, A., ATL-PHYS-SLIDE-2013-155, 2013
[2]	Neural network based cluster creation in the ATLAS Pixel Detector, Andreazza, A., ATL-PHYS-PROC-2012- 240, 2012
[3]	Track Reconstruction in the ATLAS Experiment – the Deterministic Annealing Filter, Fleischmann, S., 2007
[4]	Artemis School on Calibration and performance of ATLAS detectors / ID reconstruction, Salzburger, A., 2008
[5]	Adaptive multitrack fitting, A. Strandlie, R. Frühwirth, Computer Physics Communications, Volume 133, Issue 1, p. 34-42.

18 of 16

Backu p

Kalman filter

• Prediction:

- $x_{i+1}^{pred} = F_i x_i$ $C_{i+1}^{pred} = F_i C_i F_i^T + Q_i$
- C: covariance,
- x: track parameters,
- F: model description
- Q: material effects

• Update:

$$x_{i+1}^{upd} = x_i C_{i+1}^{upd} \left(\left(C_{i+1}^{pred} \right)^{-1} x_{i+1}^{pred} + H_{i+1}^T V_{i+1}^{-1} m_{i+1} \right) \\ \left(C_{i+1}^{upd} \right)^{-1} = \left(C_{i+1}^{pred} \right)^{-1} + H_{i+1}^T V_{i+1}^{-1} H_{i+1}$$

m: measurement parameters,

H: translation between trk/measurment space

Reference method

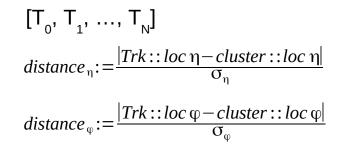
• Prediction $\Delta x_{i+1}^{pred} = J_i \Delta x_i$

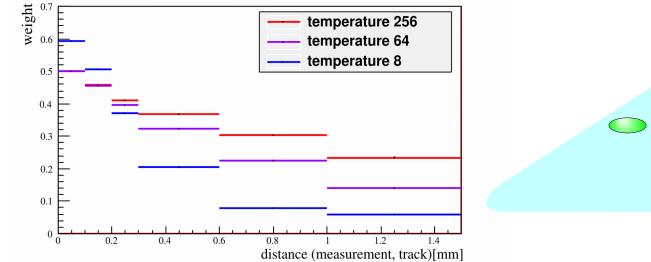
 $C_{i+1}^{pred} = J_i C_i^{ref} J_i^T + Q_i$

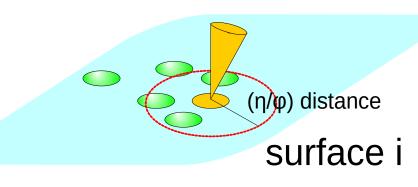
$$\Delta x = x_{trkpar} - x_{refpar}$$

Optimisation

- Goal: Reduce fake rate while hold reconstruction efficiency high
- Problematic parameters of the MTF:
 - Temperature scheme
 - Road width of additional measurements ٠ (given by local distance between track and measurements)
 - $\max(\eta/\phi)$ is the largest value for (η/ϕ) -distance ٠







0.7

21 of 16

Proposed competing ROT mean values in the SCT

• New compROT mean:

$$m'_{i} = \left(p_{a} \frac{m_{a,x}}{\lambda_{a,1}} + p_{b} \frac{m_{b,x}}{\lambda_{b,1}} \right) \left(\frac{p_{a}}{\lambda_{a,1}} + \frac{p_{b}}{\lambda_{b,1}} \right)^{-1} \qquad i \in x, y$$

$$V' = RV''R^{T}$$

$$V'' = \left(\frac{1}{p_{a}/\lambda_{a,1} + p_{b}/\lambda_{b,1}} \qquad 0 \\ 0 \qquad \frac{1}{p_{a}/\lambda_{a,2} + p_{b}/\lambda_{b,2}} \right)$$

$$R = \left(\frac{\cos(\theta') - \sin(\theta')}{\sin(\theta') - \cos(\theta)} \right)$$

• λ_{j} are the eigenvalues of the covariance matrices:

$$\lambda_{a,j} = \frac{Tr(V)}{2} \pm \sqrt{\frac{Tr(V)^2}{4} - \left(\sigma_x^2 \sigma_y^2 - \sigma_{xy}^2\right)}$$

• θ is the angle between the system of the covariance and the SCT module system

$$\theta = \frac{1}{2} \arctan\left(\frac{2\sigma_{xy}}{\sigma_x^2 - \sigma_y^2}\right)$$