
ALICE HLT TPC Tracking on GPUs

David Rohr for the ALICE Collaboration
DESY - 15.4.2013

I: Introduction
II: Integration
III: GPU Tracker Performance
IV: CPU / GPU Tracker Comparison
V: Global Tracking

Introduction
 The Large Hadron Collider (LHC) at CERN

 The Large Hadron Collider is today‘s largest particle accelerator colliding protons
at an energy of up to 14 TeV and ions at more than 1 PeV in ist 27km tunnel.

Introduction
 The ALICE detector

 ALICE is one of the major four experiments of the Large Hadron Collider at CERN.
It was specifically designed to study heavy ion collisions.

Introduction
 The ALICE detector

 ALICE is one of the major four experiments of the Large Hadron Collider at CERN.
It was specifically designed to study heavy ion collisions.

Introduction
 Proton event in TPC

Introduction
 TPC clusters of heavy-ion event.

Introduction
 Tracks reconstructed from the clusters.

Introduction
 ALICE HLT tracker divides the TPC in slices

and processes the slices individually.
 Track segments from all slices are merged

later.

Introduction

Tracking algorithm

Category of task Name of task Description on task

(Initialization)

Combinatorial part
(Cellular automation)

I: Neighbors finding

Construct seeds
(Track candidates) II: Evolution

Kalman filter part

III: Tracklet
construction

Fit seed,
extrapolate tracklet,
find new clusters

IV: Tracklet selection Select good tracklets,
sssign clusters to
tracks

(Tracklet output)

Introduction

Illustration of neighbors finding

Introduction

Illustration of evolution step

Introduction

Illustration of tracklet construction

Green: Seed Red: Extrapolation
Clusters close to the extraplation point are
searched

Introduction

Illustration of evolution step

Introduction

Illustration of tracklet construction

Introduction

Illustration of tracklet selection

Introduction

NVIDIA CUDA GPU

Introduction

Parallel Tracklet Construction

Current Row

Tracklets are independent and can be processed simultaneously
Because of Data Locality the Tracklets are processed for a common Row

Introduction

GPU Utilization

Ti
m

e

Thread

Introduction
Screenshot of ALICE Online-Event-Display

during first physics-fill with active GPU Tracker

Integration
 GPU and CPU tracker share a common source

files.
 Specialist wrappers for CPU and GPU exist,

that include these common files.
common.cpp:
__DECL FitTrack(int n) {
….
}

cpu_wrapper.cpp:
#define __DECL void
#include ``common.cpp``

void FitTracks() {
 for (int i = 0;i < nTr;i++) {
 FitTrack(n);
 }
}

gpu_wrapper.cpp:
#define __DECL __device void
#include ``common.cpp``

__kernel void FitTracksGPU() {
 FitTrack(threadIdx.x);
}

void FitTracks() {
 FitTracksGPU<<<nTr>>>();
}

Integration
 The GPU Tracker is accessed via a virtual

interface. The actual implementation is
contained in a dedicated library (cagpu), which
links against the CUDA runtime.

 AliRoot opens cagpu with dlopen, this creates a
clear separation between AliRoot and CUDA.

 The same AliRoot binaries can be used on
compute nodes with GPU and without GPU.

 This scheme is easily adoptable to other
programming APIs, such as OpenCL.

GPU Tracker Performance
 For good performance the GPU tracker

pipelines the slices such that initialization on
CPU, GPU tracking, and DMA transfer can
overlap.

 Pipeline on old hardware works well,
initialization on CPU and first GPU step
require similar time.

GPU Tracker Performance
 On new hardware, Fermi GPU and Magny-

Cours CPU, simple pipeline does not work
 Per-core performance of Magny-Cours is lower

than for Nehalem (even though total peak is
better), but the GPU tracker was single-threaded

 New Fermi GPU accelerates GPU tracking

GPU Tracker Performance
 Solution:
 Multiple GPU cores used in the pipeline.
 The CPU threads process the slices in a round-

robin fashion

CPU / GPU Tracker Comparison
 Performance: GTX580 GPU almost three

times as fast as 6-core processor.

GPU Tracker Performance
 Tracking time depends linearly on input data

size.
 GPU tracking time independent from CPU

performance (if initialization is fast enough).

GPU Tracker Performance
 Speedup of HLT GPU tracker v.s.offline and

CPU Tracker (four CPU cores used each)

CPU / GPU Tracker Comparison

 Comparison of GPU and CPU Tracker during
2010 run
 No significant variations in physically observables.
 Only the number of clusters per track statistics

shows a variation.

CPU / GPU Tracker Consistency
 Inconsistencies during November 2010 run
 Cluster to track assignment
 Track Merger
 Non-associative floating point arithmetics

CPU / GPU Tracker Consistency
 Cluster to track assignment
 Problem: Cluster to track assignment was depending

on the order of the tracks.
 Each cluster was assigned to the longest possible track.

Out of two tracks of the same length, the first one was
chosen.

 Concurrent GPU tracking processes the tracks in an
undefined order.

 Solution: Both the chi² and the track lenth are used as

criteria. It is extremely unlikely that two tracks
coincide in both values.

CPU / GPU Tracker Consistency

 How to combine chi² and track length?
 Regarding the deviation between the track and

the cluster for each cluster individually leads to
many clones.

 Hence, the total deviation of the track is used.
 Small tracks have a higher probability for having a

small chi², the right weight for both parameters
must be determined.

 Therefore, a chi² suppression factor is introduced,
that weigths chi² less than the tracklet length.

CPU / GPU Tracker Consistency

 Determinining best suppression factor
 A factor of infinite equals the old method were

only the track length is decisive.
 Incorporating chi² improves efficiency and

resolution.
 At low suppression factor only the chi² is decisve

and the tracking becomes unstable.
 Currently, a factor of 6 is used.

CPU / GPU Tracker Consistency

 Determinining best suppression factor

CPU / GPU Tracker Consistency
 Track merger
 Problem: Result of the track merger depended on

the order of input tracks.

 Solution: Merger input is sorted.
 Sorting is performed during a reformatting step.
 No additional data copy.
 No performance penalty.

CPU / GPU Tracker Consistency
 Non associative floating point arithmetics
 Problem: Different compilers perform the

arithmetics in different order (also on the CPU).

 Solution: Cannot be fixed, but...
 Slight variations during the extrapolations do not

matter as long as the clusters stay the same.
 Inconsistent clusters: 0,00024%

CPU / GPU Tracker Consistency
 Cluster per track statistic with improvements

Global Tracking
 Original HLT tracker did not find track

segments of less than 30 clusters in a slice.
 An additional step before the merger can find

these segments.

Global Tracking
 No additional tracks found.
 Newly found track segments automatically

merged with the track used as seed.
 Efficiency / clone- / fake-rate unchanged.

Global Tracking
 PP event
 Original

segments
green

 Additional
segments
orange

Global Tracking
 Pb-Pb event

Global Tracking Performance

Tracker Time increase

CPU Tracker (single threaded) 2.19%

CPU Tracker (multi-threaded) 12.60%

GPU Tracker 9.03%

Tracking time increase with global tracking
enabled.

Global Tracking

 Cluster per track statistics comparison:

CPU / GPU Tracker Consistency
 Efficiency Comparison

CPU / GPU Tracker Consistency
 Resolution Comparison

Summary
 Threefold performance increase of GPU tracker

compared to all CPUs of a node, tenfold increase in a
reasonable HLT scenario.

 GPU tracker performance is independent from CPU and
depends linearly on data size.

 Results of GPU and CPU tracker match almost
completely. Only 0.00024% of the clusters differ due to
non-associative floating-point arithmetic.

 Common source code ensures great maintainability,
separation from libAliHLTTPC makes a common binary
work on all nodes – with and without GPU.

 With global tracking the tracker can track across slice
boundaries but still explot data locality

	ALICE HLT TPC Tracking on GPUs
	Introduction
	Introduction
	Introduction
	Introduction
	Introduction
	Introduction
	Introduction
	Introduction
	Introduction
	Introduction
	Introduction
	Introduction
	Introduction
	Introduction
	Introduction
	Introduction
	Introduction
	Introduction
	Introduction
	Integration
	Integration
	Integration
	CPU / GPU Performance
	GPU Tracker Performance
	GPU Tracker Performance
	GPU Tracker Performance
	CPU / GPU Tracker Comparison
	GPU Tracker Performance
	GPU Tracker Performance
	CPU / GPU Tracker Comparison
	CPU / GPU Tracker Comparison
	CPU / GPU Tracker Consistency
	CPU / GPU Tracker Consistency
	CPU / GPU Tracker Consistency
	CPU / GPU Tracker Consistency
	CPU / GPU Tracker Consistency
	CPU / GPU Tracker Consistency
	CPU / GPU Tracker Consistency
	CPU / GPU Tracker Consistency
	Global Tracking
	Global Tracking
	Global Tracking
	Global Tracking
	Global Tracking
	Global Tracking Performance
	Global Tracking
	CPU / GPU Tracker Consistency
	CPU / GPU Tracker Consistency
	Summary

