
ATLAS Seed finder Propagation & Kalman filter ATLAS framework Conclusion and Outlook

Offline Track Reconstruction on GPUs for the
ATLAS Experiment

Sebastian Artz Johannes Mattmann Christian Schmitt

Johannes Gutenberg-Universität Mainz, Institut für Physik

Graphics Processing Units (GPUs) in High Energy Physics
Workshop, DESY, 15.04.2013

ATLAS Seed finder Propagation & Kalman filter ATLAS framework Conclusion and Outlook

Content

1 ATLAS

2 Seed finder

3 Propagation & Kalman filter

4 ATLAS framework

5 Conclusion and Outlook

ATLAS Seed finder Propagation & Kalman filter ATLAS framework Conclusion and Outlook

ATLAS Seed finder Propagation & Kalman filter ATLAS framework Conclusion and Outlook

Motivation: Why using GPUs for track reconstruction?

reconstruction time per
event around 15-20 s

ca. 400 events recorded per
second

high pile-up causes
tremendous combinatorial
complexity

necessity of raising the pT
cut

Number of Tracks
0 200 400 600 800 1000

A
rb

it
ra

ry
 U

n
it
s

0

200

400

600

800

1000

1200

1400

1600 >=15µData 2011, <

>=29µData 2011, <

>=32µData 2011, <

ATLAS Preliminary

=7 TeVs

tracks do not have mutual dependencies → algorithm
predestined for parallel implementation

ATLAS Seed finder Propagation & Kalman filter ATLAS framework Conclusion and Outlook

The GPUs used for performance measurement

GTX 460 GT 520 GTX 680

CUDA cores 336 48 1536
global memory (MB) 768 2048 2048
graphics clock (MHz) 650 810 1006 - 1058
memory clock (MHz) 1700 900 1502

GPU type GF104 GF119 GK104

ATLAS Seed finder Propagation & Kalman filter ATLAS framework Conclusion and Outlook

ATLAS Inner Detector: Pixel and Silicon Strip Detector

SCT (barrel)
SCT (end-cap)

Pixel

0

514

2720.2

[mm]

[mm]

Highlighted regions:

Si pixel detectors in barrel (center region) & endcaps: 3 layers

Si strip detectors:

barrel region: 4 double layers (with stereo angle)
endcap region: 9 discs

ATLAS Seed finder Propagation & Kalman filter ATLAS framework Conclusion and Outlook

Basic parallelisation approach

propagation/time

CPU GPU

current CPU implementation: sequential process for each
possible track
parallel GPU implementation: parallel process for all (or subset
of) tracks in one state

ATLAS Seed finder Propagation & Kalman filter ATLAS framework Conclusion and Outlook

Track reconstruction chain

1 2 3 4 5
B

1 Hit calibration and clustering

2 Seed search and track extrapolation in silicon detector region

3 Track extension into tracking chamber region

4 Track revision (ambiguity solving)

5 Final track fit based on track candidates using detailed
magnetic field map and material effects

First approach: focus on step with high combinatorics

ATLAS Seed finder Propagation & Kalman filter ATLAS framework Conclusion and Outlook

Track reconstruction chain

1 2 3 4 5
B

1 Hit calibration and clustering

2 Seed search and track extrapolation in silicon detector region

3 Track extension into tracking chamber region

4 Track revision (ambiguity solving)

5 Final track fit based on track candidates using detailed
magnetic field map and material effects

First approach: focus on step with high combinatorics

ATLAS Seed finder Propagation & Kalman filter ATLAS framework Conclusion and Outlook

Reconstruction steps implemented on GPU

zbeam pipe

pixel
detector
planes

zbeam pipe

strip
detector
planes

1. seed finder:
Check all hit triples (in
one region) if they
fulfil requirements to
possibly belong to a
track

2. propagation/Kalman
filter application:
Use seed parameters as
first estimate to extrapolate
potential track through
detector; use Kalman filter
to merge hits and prediction

ATLAS Seed finder Propagation & Kalman filter ATLAS framework Conclusion and Outlook

Reconstruction steps implemented on GPU

zbeam pipe

strip
detector
planes

1. seed finder:
Check all hit triples (in
one region) if they
fulfil requirements to
possibly belong to a
track zbeam pipe

pixel
detector
planes

2. propagation/Kalman
filter application:
Use seed parameters as
first estimate to extrapolate
potential track through
detector; use Kalman filter
to merge hits and prediction

ATLAS Seed finder Propagation & Kalman filter ATLAS framework Conclusion and Outlook

Testing the hit combinations

seed criteria

hits on a straight line in rz-plane?

η < 2.5 and origin within barrel
region?

does the track bend?

minimal circle radius (→ pT ,min)?

distance between circle and
assumed impact parameter?

ATLAS Seed finder Propagation & Kalman filter ATLAS framework Conclusion and Outlook

Testing the hit combinations

seed criteria

hits on a straight line in rz-plane?

η < 2.5 and origin within barrel
region?

does the track bend?

minimal circle radius (→ pT ,min)?

distance between circle and
assumed impact parameter?

ATLAS Seed finder Propagation & Kalman filter ATLAS framework Conclusion and Outlook

Seed finder implementation

Pixel detector
segmentation:
one full segment
& a sample
seed on one
z layer

optimization: no need to check any hit triple, constraints from
pt,min, polar angle etc. implied in spatial segmentation

CPU: sort global hits in segments (array + indices)

save reasonable segment combinations in lookup table

check hit combinations: 1 thread =̂ 1 hit triple

ATLAS Seed finder Propagation & Kalman filter ATLAS framework Conclusion and Outlook

Obtaining the seed candidate for each thread

2

4

6
8

10
12

14
16

0 1 2 3 4 scId

cumulative number of
possible hit combinations
(within simplified segment)

threadID: 6

scId: 2

in total: 11 hit
combinations
to be checked

hcId: 2

left (1): lookup process to map threadID to segment
combination, O(logN))

right (2): enumerate all hit combinations within segment
combination → 2nd reverse lookup (cf. 3D array indexing with
varying dimensions via integer division and modulo operation)

ATLAS Seed finder Propagation & Kalman filter ATLAS framework Conclusion and Outlook

Seed finder results

Performance gain
compared to our own
CPU version (∼ factor 40)

Performance gain
compared to previous,
limited GPU version

Anzahl der Spuren
40 50 60 70 80 90100 200 300

R
ek

o
n

st
ru

kt
io

n
sz

ei
t

p
ro

 E
ve

n
t

[m
s]

1

10

210

310

-Ereignissett

CPU (Intel Xenon 3.07GHz)

Nvidia GTX 460 (limitierter Algorithmus)

Nvidia GTX 520

Nvidia GTX 680

ATLAS Seed finder Propagation & Kalman filter ATLAS framework Conclusion and Outlook

Reconstruction steps implemented on GPU

zbeam pipe

strip
detector
planes

1. seed finder:
Check all hit triples (in
one region) if they
fulfil requirements to
possibly belong to a
track zbeam pipe

pixel
detector
planes

2. propagation/Kalman
filter application:
Use seed parameters as
first estimate to extrapolate
potential track through
detector; use Kalman filter
to merge hits and prediction

ATLAS Seed finder Propagation & Kalman filter ATLAS framework Conclusion and Outlook

The propagation

Propagation from one layer to the
next

parallel: find intersection point
with subsequent layer

parallel: Propagation of
parameters and covariance
matrix plus Kalman filter
processing

View along the beam
axis

ATLAS Seed finder Propagation & Kalman filter ATLAS framework Conclusion and Outlook

Propagation and Kalman filter

Propagation using an adaptive Runge-Kutta-Nyström
algorithm

Kalman filter: merge propagation result and hit information,
weighted by their respective errors

Repeat the propagation and Kalman filter application up to
the outermost layer

ATLAS Seed finder Propagation & Kalman filter ATLAS framework Conclusion and Outlook

Propagation and Kalman filter

Propagation using an adaptive Runge-Kutta-Nyström
algorithm

Kalman filter: merge propagation result and hit information,
weighted by their respective errors

Repeat the propagation and Kalman filter application up to
the outermost layer

ATLAS Seed finder Propagation & Kalman filter ATLAS framework Conclusion and Outlook

Propagation and Kalman filter

Propagation using an adaptive Runge-Kutta-Nyström
algorithm

Kalman filter: merge propagation result and hit information,
weighted by their respective errors

Repeat the propagation and Kalman filter application up to
the outermost layer

ATLAS Seed finder Propagation & Kalman filter ATLAS framework Conclusion and Outlook

Propagation and Kalman filter

Propagation using an adaptive Runge-Kutta-Nyström
algorithm

Kalman filter: merge propagation result and hit information,
weighted by their respective errors

Repeat the propagation and Kalman filter application up to
the outermost layer

ATLAS Seed finder Propagation & Kalman filter ATLAS framework Conclusion and Outlook

Finding the right intersection

SCT (barrel)
SCT (end-cap)

Pixel

0

514

2720.2

[mm]

[mm]

find an intersection with barrel/disc layer

heuristic method to find target layer

problem: faster and slower intersections are calculated in
parallel → loss of efficiency expected (warp divergency)

solution: presort tracks in the seedfinding algorithm (pure
barrel tracks, certain endcap tracks, transition area tracks)

ATLAS Seed finder Propagation & Kalman filter ATLAS framework Conclusion and Outlook

Finding the right intersection

find an intersection with barrel/disc layer

heuristic method to find target layer

problem: faster and slower intersections are calculated in
parallel → loss of efficiency expected (warp divergency)

solution: presort tracks in the seedfinding algorithm (pure
barrel tracks, certain endcap tracks, transition area tracks)

ATLAS Seed finder Propagation & Kalman filter ATLAS framework Conclusion and Outlook

Handling the inhomogeneous magnetic field

Magnetic field in the endcaps region is not constant

GPU memory is limited → trying to avoid transferring the
magnetic field map

Polynomial fit of the Bz component in the rz plane (assuming
φ dependency to be small)

inhomogeneous field → numerical propagation

ATLAS Seed finder Propagation & Kalman filter ATLAS framework Conclusion and Outlook

Handling the inhomogeneous magnetic field

Magnetic field in the endcaps region is not constant

GPU memory is limited → trying to avoid transferring the
magnetic field map

Polynomial fit of the Bz component in the rz plane (assuming
φ dependency to be small)

inhomogeneous field → numerical propagation

ATLAS Seed finder Propagation & Kalman filter ATLAS framework Conclusion and Outlook

Handling the inhomogeneous magnetic field

Magnetic field in the endcaps region is not constant

GPU memory is limited → trying to avoid transferring the
magnetic field map

Polynomial fit of the Bz component in the rz plane (assuming
φ dependency to be small)

inhomogeneous field → numerical propagation

ATLAS Seed finder Propagation & Kalman filter ATLAS framework Conclusion and Outlook

Propagation: handling track multiplicity changes

challenge: in each step tracks can end
(maximum number of ’holes’ reached) or
split up (more than one hit could possibly
belong to the current track)

approach: each track should be handled
by one track → rearrange tracks once hits
on subsequent layer have been ’seen’

implementation: basically two GPU
kernel calls: rough search for potential
track hits (step 1), further processing of
hit data and propagated original track
parameters (step 2) with matched track
numbers

ATLAS Seed finder Propagation & Kalman filter ATLAS framework Conclusion and Outlook

Overview of the parallel GPU algorithm

copy start parameters to GPU

for each layer

find intersections & save them
dynamically
copy finished track informations
to main memory
allocate memory for parameters
on destination surface
propagate to destination surface
copy parameters to main memory
free dynamic memory from
intersection step
use resulting parameters as new
start parameters

reconstruct tracks from last layer
parameters

ATLAS Seed finder Propagation & Kalman filter ATLAS framework Conclusion and Outlook

Thread data mapping between kernel calls

5 8 3 1 4 0 1 2
shared memory

Block #15
...

preparePropagation(..) [Kernel 1]

ATLAS Seed finder Propagation & Kalman filter ATLAS framework Conclusion and Outlook

Thread data mapping between kernel calls

5 8 3 1 4 0 1 2
shared memory

parallele Präfix-
summenberechnung

5 13 16 17 21 21 22 23

+5
+8

+3
+1

+4
+0

+1
+2

Block #15
...

preparePropagation(..) [Kernel 1]

ATLAS Seed finder Propagation & Kalman filter ATLAS framework Conclusion and Outlook

Thread data mapping between kernel calls

5 8 3 1 4 0 1 2
shared memory

parallele Präfix-
summenberechnung

5 13 16 17 21 21 22 23

+5
+8

+3
+1

+4
+0

+1
+2

Block #15

global memory

blockIdx.x

dev_hit_list_ptr
dev_start_param_list

dev_hit_list_size

23 9 17 12 19 0 13 7

...

...

Hits 0-22, ...

preparePropagation(..) [Kernel 1]

th
re

a
d
 0

ATLAS Seed finder Propagation & Kalman filter ATLAS framework Conclusion and Outlook

Thread data mapping between kernel calls

global memory

blockIdx.x

dev_hit_list_ptr
dev_start_param_list

Lookup: Hit # 71

dev_hit_list_size

23 9 17 12 19 0 13 7

> 23+9+17+12 = 69
≤ 80

...

Hits 0-22, ...

iterieren
✔

preparePropagation(..) [Kernel 1]

calcNextParameters(..) [Kernel 2]

ATLAS Seed finder Propagation & Kalman filter ATLAS framework Conclusion and Outlook

Thread data mapping between kernel calls

global memory

blockIdx.x

dev_hit_list_ptr
dev_start_param_list

Lookup: Hit # 71

dev_hit_list_size

23 9 17 12 19 0 13 7

> 23+9+17+12 = 69
≤ 80

...

Hits 0-22, ...

iterieren
✔

preparePropagation(..) [Kernel 1]

calcNextParameters(..) [Kernel 2]

71 - 69 = 2
(position)

ATLAS Seed finder Propagation & Kalman filter ATLAS framework Conclusion and Outlook

Reconstruction “frame” on CPU

- read and transfer geometry data
- read hit file and premade seed parameters

- transfer hit data for current event (pixel/SCT separate)
- transfer initial parameters

- start track recovery on CPU

- create new track object
- starting on outermost layer: follow 'origin references' of each
 parameter set, add all subsequent parameters

- de-allocate device memory for hits etc.

- delete geometry data
- serialize tracks for all events

for each event:

for target layer 1 to 10:

for all final parameters on
the outermost layer:

GPU-Kernel code

cuMeasuredParameters

cuMatrix: localErrorMatrix
.1 0 0 0 0
0 .1 0 0 0
0 0 .1 0 0
0 0 0 .1 0
0 0 0 0 .1

cuVector: localParameters

(-3., 4., 1.23, 0.89, 1e-4)

surfaceIdx: surfID 1243

int: parentParameterIndex 2

currentTrackParams:

2 5 0 1 1 4 3 4

1 2 6 4 4 5

0 0 2 3 7 6 5

parentParameterIndex-Werte

10

9

8

Layer:

ATLAS Seed finder Propagation & Kalman filter ATLAS framework Conclusion and Outlook

Matrix and vector operations on the GPU

set of matrix/vector operations required for
geometry (3D vectors, 3× 4 homogeneous transformation
matrices)
’parameter space’ (parameter representation, covariance
matrix, parameter transformation, Kalman filter calculations)

CUDA contains CUBLAS but unsuitable (and was only
accessible from host), commercial library available but little
documentation

therefore: implemented an own subset of CLHEP-like
methods to ease porting of existing code and increase
readibility (including operator overloading etc.)

but: only limited set of functions implemented, optimized for
specific requirements (i.e. 5× 5 and 2× 2 matrices)

ATLAS Seed finder Propagation & Kalman filter ATLAS framework Conclusion and Outlook

Performance of the propagation progress

small overhead of
the GPU version

performace gain
already achieved for
low track numbers

again comparing
GPU version to our
CPU version

around 2 orders of
magnitude speedup
(preliminary) Anzahl Myonspuren

1 10 210

R
ek

o
n

st
ru

kt
io

n
sz

ei
t

p
ro

 E
ve

n
t

[m
s]

-110

1

10

210

310

410 Myon Einzelspuren (Barrelbereich)

CPU (Intel Xenon 3.07GHz)

Nvidia GTX 560 Ti (limitierter Algorithmus)

Nvidia GTX 520

Nvidia GTX 680

ATLAS Seed finder Propagation & Kalman filter ATLAS framework Conclusion and Outlook

Profiling with Nsight

profiling one muon event with 500 tracks

ATLAS Seed finder Propagation & Kalman filter ATLAS framework Conclusion and Outlook

Profiling with Nsight

profiling one muon event with 500 tracks

ATLAS Seed finder Propagation & Kalman filter ATLAS framework Conclusion and Outlook

Integration into the ATLAS software framework

Basic approach: optional module within
the ATLAS software framework to replace
the corresponding CPU module if
GPU/CUDA available

Input data access: Wrapper module as
part of the framework obtaining input
data from ’storage’ system and returning
converted results

Special compiler (NVCC) needed, special
linking options required etc. → actual
CUDA code in external library, no changes
to the framework build system necessary

ATLAS Seed finder Propagation & Kalman filter ATLAS framework Conclusion and Outlook

Integration into the ATLAS software framework - details

GPUSiOfflineTrackWrapper

External module:
GPUSiOfflineTrack

initialize()
 - serialize geometry
 (surface) data
 - call geometry transfer
 - call settings transfer

execute()
 - serialize hit data
 - call GPU event processing
 (includes input and result
 transfer)
 - build ATLAS track objects

finalize()
 - delete geometry data

libGPUTrack

Ambiguity solving, ... (default processing on CPU)

Hit calibration and Clustering (on CPU)

Runtime properties
enable/disable GPU
processing path

algorithm structure: 3
steps - initialization
(once per run), execution
(per event), finalization
(once per run), identical
structure for the external
module

conversion between
full-featured framework
classes and slim ’C
struct’ arrays

ATLAS Seed finder Propagation & Kalman filter ATLAS framework Conclusion and Outlook

Conclusion and outlook

Results

small and mostly constant overhead from memory transfer
and lookup table creation

seedfinder: factor ∼40 speedup (w.r.t. own CPU version)

propagation: about 2 orders of magnitude speedup (w.r.t. own
CPU version, preliminary)

technical implemetation finished

Outlook

incluce first SCT layer in the seed search

performance optimizations

further performance measurements

testing/verification of framework module

ATLAS Seed finder Propagation & Kalman filter ATLAS framework Conclusion and Outlook

Thanks for your attention!

	ATLAS
	ATLAS experiment
	Track reconstruction chain

	Seed finder
	Basics
	Implementation

	Propagation & Kalman filter
	Basics
	Magnetic field access
	Implementation
	Runtime results

	ATLAS framework
	Integration into the ATLAS software framework

	Conclusion and Outlook

