Offline Track Reconstruction on GPUs for the
ATLAS Experiment

Sebastian Artz Johannes Mattmann Christian Schmitt

Johannes Gutenberg-Universitdt Mainz, Institut fiir Physik

Graphics Processing Units (GPUs) in High Energy Physics
Workshop, DESY, 15.04.2013

Bundesministerium
FSP 101 * fiir Bildun
@ PRiSMA | und Forscgung

GUTENB A r L
o SITENBERS: Cluster of Excellence _

Content

O ATLAS

© Seed finder

© Propagation & Kalman filter
Q@ ATLAS framework

@ Conclusion and Outlook

ATLAS Seed finder Propagation & Kalman filter ATLAS framework Conclusion and Outlook
©0000000 0000 00000000000 oo

A EXPERIMENT

ATLAS Seed finder Propagation & Kalman filter ATLAS framework Conclusion and Outlook
0@000000 0000 00000000000 oo

Motivation: Why using GPUs for track reconstruction?

@ reconstruction time per AL U

£ 1600 st

event around 15-20s z1a00- + 4 Data 2011, <u>-29

= E —}— Data2011, <p>=32 9

1200 -

@ ca. 400 events recorded per £ *]

d 1000~ "1} ATLAS Preliminary —

secon 800 ?A% o \ETTev E

@ high pile-up causes 600E* 4y E

tremendous combinatorial 4000 i =

complexity 2005 e E

O a0 T

@ necessity of raising the pr Number of Tracks
cut

tracks do not have mutual dependencies — algorithm
predestined for parallel implementation

The GPUs used for performance measurement

| GTX460 | GT520 | GTX680

CUDA cores 336 48 1536
global memory (MB) 768 2048 2048
graphics clock (MHz) 650 810 | 1006 - 1058
memory clock (MHz) 1700 900 1502

GPU type GF104 | GF119 GK104

Propagation & Kalman filter ATLAS framework Conclusion and Outlook

ATLAS Seed finder
oo

000@0000 0000 00000000000

ATLAS Inner Detector: Pixel and Silicon Strip Detector

SCT (end:cap)

2720.2
[mm]

Highlighted regions:
@ Si pixel detectors in barrel (center region) & endcaps: 3 layers

@ Si strip detectors:
o barrel region: 4 double layers (with stereo angle)
e endcap region: 9 discs

Basic parallelisation approach

CPU GPU

propagation/time

>

o current CPU implementation: sequential process for each
possible track

@ parallel GPU implementation: parallel process for all (or subset
of) tracks in one state

ATLAS Seed finder Propagation & Kalman filter ATLAS framework Conclusion and Outlook
00000080 0000 00000000000 oo

Track reconstruction chain

. =

@ Hit calibration and clustering

@ Seed search and track extrapolation in silicon detector region

© Track extension into tracking chamber region

© Track revision (ambiguity solving)

© Final track fit based on track candidates using detailed
magnetic field map and material effects

First approach: focus on step with high combinatorics

ATLAS Seed finder Propagation & Kalman filter ATLAS framework Conclusion and Outlook
00000080 0000 00000000000 oo

Track reconstruction chain

- =

@ Hit calibration and clustering

@ Seed search and track extrapolation in silicon detector region

© Track extension into tracking chamber region

© Track revision (ambiguity solving)

© Final track fit based on track candidates using detailed
magnetic field map and material effects

First approach: focus on step with high combinatorics

Reconstruction steps implemented on GPU

2. propagation/Kalman
filter application:
stip Use seed parameters as
d;:f;gr first estimate to extrapolate
potential track through
detector; use Kalman filter
to merge hits and prediction

1. seed finder:

Check all hit triples (in

one region) if they pixel
fulfil requirements to detector
possibly belongtoa ~ Panes
track

Reconstruction steps implemented on GPU

strip
detector
planes

1. seed finder:
Check all hit triples (in
one region) if they
fulfil requirements to
possibly belong to a
track

ATLAS Seed finder Propagation & Kalman filter ATLAS framework Conclusion and Outlook
00000000 @000 00000000000 oo

Testing the hit combinations

m

\

@ hits on a straight line in rz-plane? \ /"
@ 77 < 2.5 and origin within barrel ‘ $
region?

@ does the track bend?

e minimal circle radius (= p7 min)?

@ distance between circle and
assumed impact parameter?

ATLAS Seed finder Propagation & Kalman filter
00000000 @000 00000000000

Testing the hit combinations

seed criteria

@ hits on a straight line in rz-plane?

@ 1 < 2.5 and origin within barrel
region?

@ does the track bend?

e minimal circle radius (— p7 min)?

@ distance between circle and
assumed impact parameter?

ATLAS framework
oo

Conclusion and Outlook

Seed finder implementation

Pixel detector
segmentation:
one full segment
& a sample
seed on one

@ optimization: no need to check any hit triple, constraints from
Pt,min, Polar angle etc. implied in spatial segmentation

e CPU: sort global hits in segments (array + indices)
@ save reasonable segment combinations in lookup table

@ check hit combinations: 1 thread = 1 hit triple

Obtaining the seed candidate for each thread

cumulative number of . . .
possible hit combinations in totgl. 1_1 hit
16 T (within simplified segment) combinations
121 to be checked

x| ‘ \)/

8,
g' (hetd: 2)
2,

0 1 2 3 4 scld \
o left (1): lookup process to map threadlD to segment
combination, O(log N))
o right (2): enumerate all hit combinations within segment

combination — 2" reverse lookup (cf. 3D array indexing with
varying dimensions via integer division and modulo operation)

Seed finder results

ti-Ereignisse FhaT
CPU (Intel Xenon 3.07GHz) ",*i
I ———— Nvidia GTX 460 (limitierter Algorithmus)| o+t
i E103| —+— nwidiacmxszo “‘,"* N
@ Performance gain g |t wusonwo L
i F st ,u‘"
compared to our own o [Lot Lt st
. o . et Eye e
CPU version (~ factor 40) 3= , . ceorare™
2 £ .t paeett
. C - F
@ Performance gain g [L Lottt
. 2 .t PR]
compared to previous, £ 0p boolee
. . . X r * +*
limited GPU version ¢
L $ +
L L L P L L
%0 50 60 70 80 90100 200 300

Anzahl der Spuren

Reconstruction steps implemented on GPU

2. propagation/Kalman
filter application:

Use seed parameters as
first estimate to extrapolate
potential track through
detector; use Kalman filter
to merge hits and prediction

pixel
detector
planes

agation

The propagation

Propagation from one layer to the
next

@ parallel: find intersection point
with subsequent layer)

@ parallel: Propagation of se
parameters and covariance 0>
matrix plus Kalman filter
processing

7z 7 \\l \

View along the beam
axis

Propagation and Kalman filter

hit

destination surface

start surface

Propagation and Kalman filter

hit

destination surface

STEP propagation

start surface
@ Propagation using an adaptive Runge-Kutta-Nystrom
algorithm

Propagation and Kalman filter

kalman filter
D\t

destination surface

STEP propagation

start surface

@ Propagation using an adaptive Runge-Kutta-Nystrom
algorithm

o Kalman filter: merge propagation result and hit information,
weighted by their respective errors

ATLAS Seed finder Propagation & Kalman filter ATLAS framework Conclusion and Outlook
00000000 0000 0O®000000000 oo

Propagation and Kalman filter

kalman filter
/it

destination surface

prediction
STEP propagation U

start surface
@ Propagation using an adaptive Runge-Kutta-Nystrom
algorithm

o Kalman filter: merge propagation result and hit information,
weighted by their respective errors

@ Repeat the propagation and Kalman filter application up to
the outermost layer

ATLAS Seed finder Propagation & Kalman filter ATLAS framework Conclusion and Outlook
00000000 0000 0O®00000000 oo

Finding the right intersection

[mm]
514

STl — — | .. A L.
SCT barrel' - N | SCT (end—cap)

e find an intersection with barrel /disc layer
@ heuristic method to find target layer

@ problem: faster and slower intersections are calculated in
parallel — loss of efficiency expected (warp divergency)

@ solution: presort tracks in the seedfinding algorithm (pure
barrel tracks, certain endcap tracks, transition area tracks)

ATLAS Seed finder Propagation & Kalman filter ATLAS framework Conclusion and Outlook
00000000 0000 0O®00000000 oo

Finding the right intersection

(B1) 02).~ |:| |:|(‘F4) H

__.-’:(31) (Tl):.-":

p— je—
(B1) (T1)

— 1 ke
(E1) (E2)

e find an intersection with barrel/disc layer

@ heuristic method to find target layer

@ problem: faster and slower intersections are calculated in
parallel — loss of efficiency expected (warp divergency)

@ solution: presort tracks in the seedfinding algorithm (pure
barrel tracks, certain endcap tracks, transition area tracks)

Handling the inhomogeneous magnetic field

’g‘ 1400

E . — 18
= 1200 — Eem————

1000

= = ——
500 1000 1500 2000 2500 3000 3500
z [mm]

@ Magpnetic field in the endcaps region is not constant

@ GPU memory is limited — trying to avoid transferring the
magnetic field map

@ Polynomial fit of the B, component in the rz plane (assuming
¢ dependency to be small)

ATLAS Seed finder Propagation & Kalman filter ATLAS framework Conclusion and Outlook
00000000 0000 000®0000000 oo

Handling the inhomogeneous magnetic field

Y
R
S
R

data (dots) + fit fit - data

@ Magpnetic field in the endcaps region is not constant
@ GPU memory is limited — trying to avoid transferring the
magnetic field map

@ Polynomial fit of the B, component in the rz plane (assuming
¢ dependency to be small)

ATLAS Seed finder Propagation & Kalman filter ATLAS framework Conclusion and Outlook
00000000 0000 000®0000000 oo

Handling the inhomogeneous magnetic field

S
A
“\"5‘."“.‘:
o .‘.‘-‘tt‘.t‘

data (dots) + fit fit - data

Magnetic field in the endcaps region is not constant

@ GPU memory is limited — trying to avoid transferring the
magnetic field map

Polynomial fit of the B, component in the rz plane (assuming
¢ dependency to be small)

inhomogeneous field — numerical propagation

ATLAS Seed finder Propagation & Kalman filter ATLAS framework

Conclusion and Outlook
00000000 0000 0000®@000000 oo

Propagation: handling track multiplicity changes

@ challenge: in each step tracks can end #threads: 4
. ') 1 thread/target hit
(maximum number of 'holes’ reached) or filtered parameter set
split up (more than one hit could possibly \“ | | step2:
| |
belong to the current track) \ \ | Kalman
| || filter, new
@ approach: each track should be handled | | parameters

by one track — rearrange tracks once hits {
on subsequent layer have been 'seen’

o implementation: basically two GPU
kernel calls: rough search for potential
track hits (step 1), further processing of

step 1:
propagation
to next layer

hit data and propagated original track #threads: 3
) 1 thread/incoming track
parameters (step 2) with matched track = initial parameter set

numbers

Overview of the parallel GPU algorithm

@ copy start parameters to GPU

o for each layer

e find intersections & save them
dynamically

e copy finished track informations
to main memory

o allocate memory for parameters
on destination surface

e propagate to destination surface

@ copy parameters to main memory

o free dynamic memory from
intersection step

@ use resulting parameters as new
start parameters

copy start param

kernel: intersection

copy: finished track

reconstruction

repeat 15 times

@ reconstruct tracks from last layer
parameters

preparePropagation(..) [Kernel 1]

dev_hit_list_ptr
dev_start_param_list

ANNEEEREER

global memory

dev_hit_list_size

ANNEEEREER

Thread data mapping between kernel calls

preparePropagation(..) [Kernel 1]

dev_hit_list_ptr

Block #15 dev_start_param_li

SENRRRR JTITTLIIN
Pl

shared memory

NN\
parallele Prafix- /I I I I I I I I Il

summenberechnung

global memory

/AN

Thread data mapping between kernel calls

preparePropagation(..) [Kernel 1]

blockldx.x
He dev_hit_list_ptr
Block #15 - dev_start_param_list
EEEEERR
global memory
shared memory

Hits 0-22, ... dev_hit_list_size

/ [23] 9 [a7]12[29] 0 [13] 7] |

NNV

parallele Prafix-
summenberechnung

/AN NN

Thread data mapping between kernel calls

preparePropagation(..) [Kernel 1]
block_ldx,x

dev_hit_list_ptr

Block #15 dev_start_param_list

RRRRRER

IREREERR
[sle[3]2]4]of2]2]

shared memory

NN\

/ [23] 9 [17]12[29] 0 [13] 7] |
X X X x

2

global memory

parallele Prafix-
summenberechnung

/AN NN

iterieren > 23+9+17+12 = 69
v

=80

[o]5 [13[15[17[21[21[2'2[2'3|
W
\.J\ J calcNextParameters(..) [Kernel 2]
+1
\q)‘w’\ »

Thread data mapping between kernel calls

preparePropagation(..) [Kernel 1]

blockldx.x
dev_hit_list_ptr
Block #15 ' dev_start_param_list
EEEEERE
[sle[3]2]4]of2]2] . i
shared memory . 71-69 =2

(position)

NN\

/ [23] 9 [a7]12[29] 0 [23] 7] |
X X X x

parallele Prafix-
summenberechnung

/AN NN

[c? [s [1;[15[1v7[2v1[2v1[2v2[2v3|

iterieren > 23+9+17+12 = 69
v

=80

Lookup: Hit # 71

—

ALt

‘ \.z{ J calcNextParameters(..) [Kernel 2]
+1 \‘4)

Reconstruction “frame” on CPU

- read and transfer geometry data
- read hit file and premade seed parameters

currentTrackParams: Layer:

—)l for each event: .
- transfer hit data for current event (pixel/SCT separate)
- transfer initial parameters
—'l for target layer 1 to 10: 9
GPU-Kernel code
— CEPde] [«]=]]w

parentParameterindex-Werte

for all final parameters on CuMeasuredParameters
the outermost layer:
surfaceldx: surflD 1243

- create new track object
- starting on outermost layer: follow 'origin references' of each cuVector: localParameters
parameter set, add all subsequent parameters (-3.,4.,1.23,0.89, 1le-4)

- start track recovery on CPU

|

cuMatrix: localErrorMatrix

B
=3
=3
=3
=3

- de-allocate device memory for hits etc.

i

cocoo
coo
ool
oo
moo

int: parentParameterindex 2

- delete geometry data
- serialize tracks for all events

ATLAS Seed finder Propagation & Kalman filter ATLAS framework Conclusion and Outlook
00000000 0000 00000000800 oo

Matrix and vector operations on the GPU

@ set of matrix/vector operations required for
o geometry (3D vectors, 3 x 4 homogeneous transformation
matrices)
o 'parameter space’ (parameter representation, covariance
matrix, parameter transformation, Kalman filter calculations)
e CUDA contains CUBLAS but unsuitable (and was only
accessible from host), commercial library available but little
documentation

o therefore: implemented an own subset of CLHEP-like
methods to ease porting of existing code and increase
readibility (including operator overloading etc.)

@ but: only limited set of functions implemented, optimized for
specific requirements (i.e. 5 X 5 and 2 x 2 matrices)

Performance of the propagation progress

@ small overhead of

the GPU version 10" [iyon Emzeispuren @arreibereicn) :
ot vanom a7 .
e performace gain [pempriab . .
already achieved for § p——=== y L
low track numbers o .[bt
310°F H .
@ again comparing (A . Hﬁi T
GPU version to our £ * * "7 .
CPU version EF 0 cared
o around 2 orders of £ 1: '
magnitude speedup [R T R
(preliminary) ! Anzahf Myonspuren 1o

Profiling with Nsight

=) Process 19668
= Thread 1705617632

Profiing Overhead o n LI A {0 A T 1 |

7 MemCpy (HtoD) /0 R O A A O R [[A [A]
T MemCpy (DtoH) [} O 1 1L 1 L A |
7 Mempy (DtoD) |
) Compute T | T o o ol = R
7 82.2% [40] calcN... . T --I-I-I . ----l-ll-l-- -- [
7 12.4% (411 prep. [N) i rmrrrna i LI [|
Toanrchecks.. | (I
7 2.4% [40) freeDy. [(- A A [[(- [T A A
vooxpzeimen..| ||| | | Y B A LI B B | [{ I B A |
(= streams
stream 2 | T o s st i i e s s . s

profiling one muon event with 500 tracks

oo 0™ DRERGET G Gt
Profiling with Nsight

. s 158
=) Process 19668
= Thread 1705617632

——
Oriver AP
Profiing over o n LI A {0 A T 1 |
[=112] GeForce 6T 520
= Context 1

[N A |
|

[[|)
T MemCpy (DtoH) LTIl O 1 |

|
| Compute
7 82.2% (40) calcN.
7 12.4% [41) prep.
T 3.1% (3] checks...
7 2.4% [40) freeDy.
7 0.0% (126) mem...
i Streams.
Stream 2

g | |
seedfinder propagation transition propagation endcap propagation barrel

area seeds seeds seeds

profiling one muon event with 500 tracks

Integration into the ATLAS software framework

@ Basic approach: optional module within
the ATLAS software framework to replace
the corresponding CPU module if
GPU/CUDA available

@ Input data access: Wrapper module as
part of the framework obtaining input
data from 'storage’ system and returning
converted results

@ Special compiler (NVCC) needed, special
linking options required etc. — actual
CUDA code in external library, no changes
to the framework build system necessary

ATLAS Seed finder Propagation & Kalman filter ATLAS framework Conclusion and Outlook
00000000 0000 00000000000 oe

Integration into the ATLAS software framework - details

@ Runtime properties

Hit calibration and Clustering (on CPU) enable/disable GPU
Y .
GPUSIOfflineTrackWrapper processing path
L crterml module; ® 28Orithm structure: 3
(surface) data GPUSIOfflineTrack steps - initialization
- call geometry transfer . .
 Call settings transfer \\ﬁllePUTrack (once per run), execution
execute() ~J® (per event), finalization
- serialize hit data N @ . .
- call GPU event processing | @ o (once per run), identical
(includes input and result
transfer) I IE A structure for the external
- build ATLAS track objects mod |e
finalize() u
=CEEE CEE Y e @ conversion between
Y
Ambiguity solving, ... (default processing on CPU) fuII-featu red framework

classes and slim 'C
struct’ arrays

ATLAS Seed finder Propagation & Kalman filter ATLAS framework Conclusion and Outlook
00000000 0000 00000000000 oo

Conclusion and outlook

@ small and mostly constant overhead from memory transfer
and lookup table creation

o seedfinder: factor ~40 speedup (w.r.t. own CPU version)

@ propagation: about 2 orders of magnitude speedup (w.r.t. own
CPU version, preliminary)

@ technical implemetation finished

incluce first SCT layer in the seed search

performance optimizations

further performance measurements

testing/verification of framework module

Thanks for your attention!

	ATLAS
	ATLAS experiment
	Track reconstruction chain

	Seed finder
	Basics
	Implementation

	Propagation & Kalman filter
	Basics
	Magnetic field access
	Implementation
	Runtime results

	ATLAS framework
	Integration into the ATLAS software framework

	Conclusion and Outlook

