Quantum Chromodynamics in Strong Magnetic Fields

Tigran Kalaydzhyan

ArXiv: 1003.2180, 1102.4334, 1208.0012, 1212.3168, 1011.2519, 1011.3795, 1012.1966, 1111.6733, 1203.4259, 1301.6558, 1302.6458, 1302.6510.

July 10, 2013. DESY & Universität Hamburg, Germany.

Local Parity Violation in Strong Magnetic Fields

Tigran Kalaydzhyan

ArXiv: 1003.2180, 1102.4334, 1208.0012, 1212.3168, 1011.2519, 1011.3795, 1012.1966, 1111.6733, 1203.4259, 1301.6558, 1302.6458, 1302.6510.

July 10, 2013. DESY & Universität Hamburg, Germany.

Electromagnetic fields

RHIC

LHC

Huge electromagnetic fields, never observed before!

Black curves are from W.-T. Deng and X.-G. PRC 85, 044907

 Spins parallel to B

Left-handed

- Spins parallel to B
- Momenta antiparallel

Left-handed

 Spins parallel to B

 Momenta antiparallel

• If
$$\rho_5 \equiv \rho_L - \rho_R \neq 0$$

then we have
a net electric
current parallel
to B

Fukushima, Kharzeev, McLerran, Warringa (2007)

Left-handed

Heavy-ion collisions

Fukushima, Kharzeev, McLerran, Warringa (2007)

For the local strong parity violation see e.g. 0909.1717 (STAR) and 1207.0900 (ALICE)

Observables

- Chiral condensate.
- Chirality. $\langle \bar{\Psi} \gamma_5 \Psi \rangle$
- Electric and axial currents.
- Magnetization and polarization.
- Magnetic susceptibility.
- Electric conductivity.

 $\langle \bar{\Psi}_x \gamma_\mu \Psi_x \cdot \bar{\Psi}_y \gamma_\nu \Psi_y \rangle$

 $\langle \bar{\Psi} \Psi \rangle$

 $\langle \bar{\Psi} \gamma_{\mu} \Psi \rangle, \langle \bar{\Psi} \gamma_{\mu} \gamma_{5} \Psi \rangle$

 $\langle \bar{\Psi} \gamma_{[\mu} \gamma_{\nu]} \Psi \rangle$

Task: find the magnetic field dependence of these observables, study the vacuum structure and possible new phenomenology.

Observables

- Chiral condensate.
- Chirality.
- Electric and axial currents.
- Magnetization and polarization.
- Magnetic susceptibility.
- Electric conductivity.

 $\langle \bar{\Psi}_x \gamma_\mu \Psi_x \cdot \bar{\Psi}_y \gamma_\nu \Psi_y \rangle$

 $\langle \bar{\Psi} \Psi \rangle$

 $\langle \bar{\Psi} \gamma_5 \Psi \rangle$

 $\langle \bar{\Psi} \gamma_{\mu} \Psi \rangle, \langle \bar{\Psi} \gamma_{\mu} \gamma_{5} \Psi \rangle$

 $\langle \bar{\Psi} \gamma_{[\mu} \gamma_{\nu]} \Psi \rangle$

I will present briefly these results, for the rest see Falk's talk!

Anomalous effects

Hydrodinamic equatio

$$\partial_{\mu} T^{\mu\nu} = F^{\nu\lambda} j_{\lambda},$$

$$\partial_{\mu} j_{5}^{\mu} = C E^{\lambda} \cdot B_{\lambda} + \frac{C}{3} E_{5}^{\lambda} \cdot B_{5\lambda},$$

$$\partial_{\mu} j^{\mu} = 0$$

where vector a

$$F^{\nu\lambda} j_{\lambda},$$

$$C E^{\lambda} \cdot B_{\lambda} + \frac{C}{3} E_{5}^{\lambda} \cdot B_{5\lambda},$$

$$j^{\mu} = \rho u^{\mu} + \kappa_{\omega} \omega^{\mu} + \kappa_{B} B^{\mu} + \dots$$

$$j^{\mu}_{5} = \rho_{5} u^{\mu} + \xi_{\omega} \omega^{\mu} + \xi_{B} B^{\mu} + \dots$$

$$\kappa_{\omega} = 2C \mu \mu_{5} \left(1 - \frac{\mu \rho}{\epsilon + P} [1 + \frac{\mu_{5}^{2}}{3\mu^{2}}] \right),$$

$$\kappa_{B} = C \mu_{5} \left(1 - \frac{\mu \rho}{\epsilon + P} \right),$$

$$CME$$

$$\xi_{\omega} = C \mu^{2} \left(1 - 2 \frac{\mu_{5} \rho_{5}}{\epsilon + P} [1 + \frac{\mu_{5}^{2}}{3\mu^{2}}] \right),$$

$$\xi_{B} = C \mu \left(1 - \frac{\mu_{5} \rho_{5}}{\epsilon + P} \right),$$

$$CSE$$

CVE

QVE

T.K. and I. Kirsch, PRL 106 (2011) 211601 + PRD 85 (2012) 126013

Electrical conductivity

P.V. Buividovich, M.N. Chernodub, D.E. Kharzeev, T.K., E.V. Luschevskaya, M.I. Polikarpov, **PRL** 105 (2010) 132001 + soft dilepton and photon production rates

QCD vacuum

 $\rho_R \neq \rho_L$

Positive topological charge density

Negative topological charge density

For the details of the simulation see P. Buividovich, T.K., M. Polikarpov PRD 86, 074511

Fractal dimension

P. Buividovich, T.K., M. Polikarpov PRD 86, 074511

4D Bosonization

The total effective Euclidean Lagrangian for QCD×QED reads as

$$\mathcal{L}_{E}^{(4)} = \frac{1}{4} G^{a\mu\nu} G^{a}_{\mu\nu} + \frac{1}{4} F^{\mu\nu} F_{\mu\nu} - j^{\mu} A_{\mu}$$
$$+ \frac{\Lambda^{2} N_{c}}{4\pi^{2}} \partial^{\mu} \theta \partial_{\mu} \theta + \frac{g^{2}}{16\pi^{2}} \theta G^{a\mu\nu} \widetilde{G}^{a}_{\mu\nu} + \frac{N_{c}}{8\pi^{2}} \theta F^{\mu\nu} \widetilde{F}_{\mu\nu}$$
$$+ \frac{N_{c}}{24\pi^{2}} \theta \Box^{2} \theta - \frac{N_{c}}{12\pi^{2}} \left(\partial^{\mu} \theta \partial_{\mu} \theta \right)^{2}$$

Here θ is a result of a gauge-invariant bosonization of the low-lying fermionic modes with finite cutoff Λ and gauged U(1) axial symmetry. The transformation parameter becomes a dynamical axion-like field. The cutoff has a physical meaning,

$$\Lambda_T = \pi \sqrt{\frac{2}{3}} \sqrt{T^2 + \frac{\mu^2}{\pi^2}} \qquad \qquad \Lambda_B = 2\sqrt{|eB|} \qquad \qquad \Lambda_{latt} \simeq 3 \,\text{GeV}$$

An additional electric current induced by the θ -field:

$$j_{\lambda} = -C\mu_5 B_{\lambda} + C\epsilon_{\lambda\alpha\kappa\beta} u^{\alpha} \partial^{\kappa} \theta E^{\beta} - Cu_{\lambda} (\partial\theta \cdot B)$$

An additional electric current induced by the θ -field:

$$j_{\lambda} = -C\mu_5 B_{\lambda} + C\epsilon_{\lambda\alpha\kappa\beta} u^{\alpha} \partial^{\kappa} \theta E^{\beta} - Cu_{\lambda} (\partial\theta \cdot B)$$

• Chiral Magnetic Effect (electric current along B-field)

An additional electric current induced by the θ -field:

 $j_{\lambda} = -C\mu_5 B_{\lambda} + C\epsilon_{\lambda\alpha\kappa\beta} u^{\alpha} \partial^{\kappa} \theta E^{\beta} - Cu_{\lambda} (\partial\theta \cdot B)$

- Chiral Magnetic Effect (electric current along B-field)
- Chiral Electric Effect (electric current transverse to E-field and to both normal and superfluid velocities)

An additional electric current induced by the θ -field:

$$j_{\lambda} = -C\mu_5 B_{\lambda} + C\epsilon_{\lambda\alpha\kappa\beta} u^{\alpha} \partial^{\kappa} \theta E^{\beta} - Cu_{\lambda} (\partial\theta \cdot B)$$

- Chiral Magnetic Effect (electric current along B-field)
- Chiral Electric Effect (electric current transverse to E-field and to both normal and superfluid velocities)
- Chiral Dipole Wave (dipole moment induced by B-field)

An additional electric current induced by the θ -field:

$$j_{\lambda} = -C\mu_5 B_{\lambda} + C\epsilon_{\lambda\alpha\kappa\beta} u^{\alpha} \partial^{\kappa} \theta E^{\beta} - Cu_{\lambda} (\partial\theta \cdot B)$$

в

reaction plane

 E_{ind}

- Chiral Magnetic Effect (electric current along B-field)
- Chiral Electric Effect (electric current transverse to E-field and to both normal and superfluid velocities)
- Chiral Dipole Wave (dipole moment induced by B-field)
- The field θ(x) itself: Chiral Magnetic Wave (propagating imbalance between the number of left- and righthanded quarks)
 T.K., arXiv:1208.0012, Nucl. Phys. A 913 (2013) 243

Chromodynamic spaghetti

Still, the physical meaning of θ is not clear. It might be a field propagating along the percolating vortices (keep in mind d=2..3) without dissipation. We can test the color conductivity of QCD by solving the YM equations

We switch on a constant field B along the 3-rd spatial and color directions:

$$A^{3} = A_{1}^{3} + iA_{2}^{3} = \frac{B}{2}\left(ix_{1} - x_{2}\right)$$

solve the YM equations for the transverse components

$$A^{\pm}_{\mu} = \frac{1}{\sqrt{2}} \left(A^{1}_{\mu} \mp i A^{2}_{\mu} \right), \qquad A = A^{-}_{1} + i A^{-}_{2}$$

and obtain the Abrikosov lattice of color-superconducting flux tubes

$$A(x_1, x_2) = \phi_0 \, e^{igBx_2 \frac{x_1 + ix_2}{2}} \theta_3 \left(\frac{(x_1 + ix_2)\nu}{L_B}, e^{\frac{2i\pi}{3}} \right)$$

M. Chernodub, J. Van Doorsselaere, T.K., H. Verschelde, arXiv:1212.3168

Thank you for the

attention

slides

Hydrodynamic equations

Considering EOM for the Minkowski effective Lagrangian and only the color-singlet states, we obtain:

Similar to the superfluid dynamics!

Constitutive relations

Solving hydrodynamic equations in the gradient expansion, we obtain the constitutive relations:

Notice the additional current

Step 1: Lattice action

$$S = -\beta \sum_{x,\mu > \nu} \left\{ \frac{5}{3} \frac{P_{\mu\nu}}{u_0^4} - r_{\rm g} \frac{R_{\mu\nu} + R_{\nu\mu}}{12 \, u_0^6} \right\} + c_{\rm g} \, \beta \sum_{x,\mu > \nu > \sigma} \frac{C_{\mu\nu\sigma}}{u_0^6}$$

$$C_{\mu\nu\sigma} = \frac{1}{3} \operatorname{Re} \operatorname{Tr}$$

Lüscher and Weisz (1985), see also Lepage hep-lat/9607076

$$r_{\rm g} = 1 + .48 \,\alpha_s(\pi/a)$$
$$c_{\rm g} = .055 \,\alpha_s(\pi/a)$$

Step 2: Monte Carlo

- Heat bath for SU(2)
- Use the standard algorithm for each subgroup of SU(3). Cabibbo & Marinari (1982)

$$a_1 = \begin{pmatrix} \alpha_1 & \\ & 1 \end{pmatrix}, \quad a_2 = \begin{pmatrix} 1 & \\ & \alpha_2 \end{pmatrix}, \quad a_3 = \begin{pmatrix} \alpha_{11} & \alpha_{12} \\ & 1 & \\ & \alpha_{21} & \alpha_{22} \end{pmatrix}$$

- Overrelaxation. Adler (1981)
- Cooling (smearing) for some particular cases.
 DeGrand, Hasenfratz, Kovács (1997)

Step 3: Fermions & B-field

 $D_{ov} = \frac{1}{a} \left(1 - \frac{A}{\sqrt{A^{\dagger} A}} \right)$ $A = 1 - a D_W(0)$ **Neuberger overlap operator (1998)** $\langle \bar{\Psi} \hat{\Gamma} \Psi \rangle \sim \operatorname{Tr} \left[\hat{\Gamma} D_{ov}^{-1} \right]^{\not\models}$ • $\hat{\Gamma} \in \{1, \gamma^5, \gamma^\mu, \sigma_{\mu\nu}, ...\}$ Buividovich, Chernodub, Luschevskaya, Polikarpov (2009)

Chiral condensate

Chiral condensate

Chiral condensate

$$\Sigma = \Sigma_0 + \# B^{\nu}$$

Exponent	Model	Reference
2	Nambu-Jona-Lasinio model	Klevansky, Lemmer '89
1	Chiral perturbation theory (weak B)	Scramm, Muller, Schramm '92 Shushpanov, Smilga '97
3/2	Chiral perturbation theory (strong B)	
2	Holographic Karch-Katz model	Zayakin '08
3/2	1 flavor overlap fermions	Braguta, Buividovich, T.K., Polikarpov '10
3/2	D3/D7 holographic system (low temperatures)	Evans, T.K., Kim, Kirsch '10
1	D3/D7 holographic system ("high" temperatures)	
1.3 2.3	2 flavors staggered fermions	D'Ellia, Negro '11

Magnetic susceptibility

$$\langle \bar{\Psi}\sigma_{\alpha\beta}\Psi\rangle = \chi(F)\langle \bar{\Psi}\Psi\rangle qF_{\alpha\beta}$$

Magnetic susceptibility

$$\langle \bar{\Psi}\sigma_{\alpha\beta}\Psi\rangle = \chi(F)\langle \bar{\Psi}\Psi\rangle qF_{\alpha\beta}$$
$$\partial_B \langle \bar{\Psi}\sigma_{12}\Psi\rangle |_{B\to 0} = q\chi_0^{\text{fit}} \cdot \Sigma_0$$

Vacuum of QCD is a paramagnetic!

Result (GeV ⁻²)	Model	Reference
-4.24 ± 0.18	1 flavor overlap fermions	Braguta, Buividovich, T.K., Polikarpov '10
-4.32	instanton vacuum model	Petrov et al.'99, Kim et al.'05, Dorokhov'05
-3.2 ± 0.3	QCD sum rules	Ball, Braun, Kivel '03
-2.9 ± 0.5	QCD sum rules	Rohrwild '07
-5.7	QCD sum rules	Belyaev, Kogan '84
-4.4 ± 0.4	QCD sum rules	Balitsky, Kolesnichenko, Yung '85
-4.3	quark-meson model	loffe '09
-5.25	Nambu-Jona-Lasinio	Frasca, Ruggieri '11
-8.2	OPE + pion dominance	Vainstein '02

Current-current correlator

$$G_{ij}(\tau) = \int d^3 \vec{x} \langle J_i(\vec{0}, 0) J_j(\vec{x}, \tau) \rangle$$

C-C. spectral function

$$\gamma_{\alpha,\beta} = \langle \cos(\phi_{\alpha} + \phi_{\beta}) \rangle = \langle \cos \cos \rangle - \langle \sin \sin \rangle$$
$$\delta_{\alpha,\beta} = \langle \cos(\phi_{\alpha} - \phi_{\beta}) \rangle = \langle \cos \cos \rangle + \langle \sin \sin \rangle$$
in-plane out-of-plane

$$\gamma_{\alpha,\beta} \sim v_2 F_{\alpha,\beta} - H^{\text{out}}_{\alpha,\beta} + H^{\text{in}}_{\alpha,\beta}$$
$$\delta_{\alpha,\beta} \sim F_{\alpha,\beta} + H^{\text{out}}_{\alpha,\beta} + H^{\text{in}}_{\alpha,\beta} + \dots$$

$$\gamma_{\alpha,\beta} = \langle \cos(\phi_{\alpha} + \phi_{\beta}) \rangle = \langle \cos \cos \rangle - \langle \sin \sin \rangle$$

$$\delta_{\alpha,\beta} = \langle \cos(\phi_{\alpha} - \phi_{\beta}) \rangle = \langle \cos \cos \rangle + \langle \sin \sin \rangle$$

in-plane out-of-plane

$$\gamma_{\alpha,\beta} \sim v_{2} F_{\alpha,\beta} - H^{\text{out}}_{\alpha,\beta} + H^{\text{in}}_{\alpha,\beta}$$

$$\delta_{\alpha,\beta} \sim F_{\alpha,\beta} + H^{\text{out}}_{\alpha,\beta} + H^{\text{in}}_{\alpha,\beta} + \dots$$

flow-dependent flow-independent

Inverse Participation Ratio

Observables:

 $\rho_{\lambda}(x) = \psi_{\lambda}^{*\,\alpha}(x)\psi_{\lambda\alpha}(x) \quad - \qquad \text{,Chiral condensate" for eigenvalue } \lambda$ $\rho_{\lambda}^{5}(x) = \left(1 - \frac{\lambda}{2}\right)\psi_{\lambda}^{*\,\alpha}(x)\gamma_{\alpha\beta}^{5}\psi_{\lambda}^{\beta}(x) \quad - \qquad \text{,Chirality" = Topological charge density}$

Inverse Participation Ratio (inverse volume of the distribution):

IPR = $N \sum_{x} \rho_i^2(x)$ $\sum \rho_i(x) = 1$	Unlocalized: $\rho(x) = const$, IPR = 1 Localized on a site: IPR = N Localized on fraction f of sites: IPR = 1/ f	
\overline{x}		

Fractal dimension (performing a number of measurements with various lattice spacings):

$$IPR(a) = \frac{const}{a^d}$$

Localization of zero-modes

٦

Definition:

IPR₀ = N
$$\left[\frac{\sum_{x} (\rho_0(x))^2}{\left(\sum_{x} \rho_0(x)\right)^2} \right]_{\lambda=0}$$

Г

$$\rho_{\lambda}(x) = \psi_{\lambda}^{*\,\alpha}(x)\psi_{\lambda\alpha}(x)$$

$$\rho_{\lambda}^{5}(x) = \left(1 - \frac{\lambda}{2}\right)\psi_{\lambda}^{*\,\alpha}(x)\gamma_{\alpha\beta}^{5}\psi_{\lambda}^{\beta}(x)$$

Topological charge density

Definition 1:

$$\mathrm{IPR}_{0}^{5} = N \left[\frac{\sum_{x} \left| \rho_{0}^{5}(x) \right|^{2}}{\left(\sum_{x} \left| \rho_{0}^{5}(x) \right| \right)^{2}} \right]_{\lambda},$$

Definition 2:

$$\operatorname{IPR}_{0}^{5} = N \left[\frac{\sum_{x} \left(\rho_{0}^{5}(x) \right)^{2}}{\left(\sum_{x} \rho_{0}(x) \right)^{2}} \right]_{\lambda}$$

