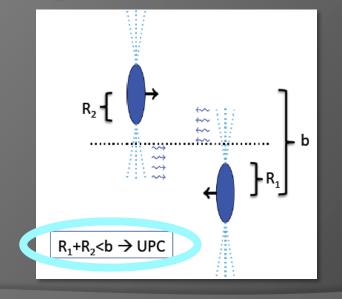


J/ψ photoproduction in Pb-Pb and p-Pb ultra-peripheral collisions with ALICE at LHC

D. De Gruttola* for ALICE Collaboration

*Centro Fermi Roma and Salerno INFN - Italy



Summary

 \checkmark LHC as γ Pb and γ p collider (Ultra-peripheral collisions) \checkmark Physics motivation (gluon distribution in nuclei and nucleons) ALICE and UPCs (detector and trigger description) \checkmark J/ ψ cross section (forward and mid-rapidity) \checkmark results and comparison with models (gluon shadowing) $\checkmark \gamma \gamma$ cross section (constraint on QED processes) ✓ first results in pA (proton as a target) conclusions (achieved results and on going analyses)

LHC as yPb and yp collider

- ✓ at the LHC heavy ions are accelerated towards each other at ultra relativistic energies
- being charged particles, they are accompanied by an electromagnetic field
- ✓ the EM field can be viewed as a flux of quasi-real photons
- \checkmark intensity of the photon beam proportional to Z^2
- ✓ photon flux well described in Fermi-Weizsäcker-Williams approximation
- ✓ hadronic processes strongly suppressed
- \checkmark high σ for γ -induced reactions e.g. vector meson photoproduction

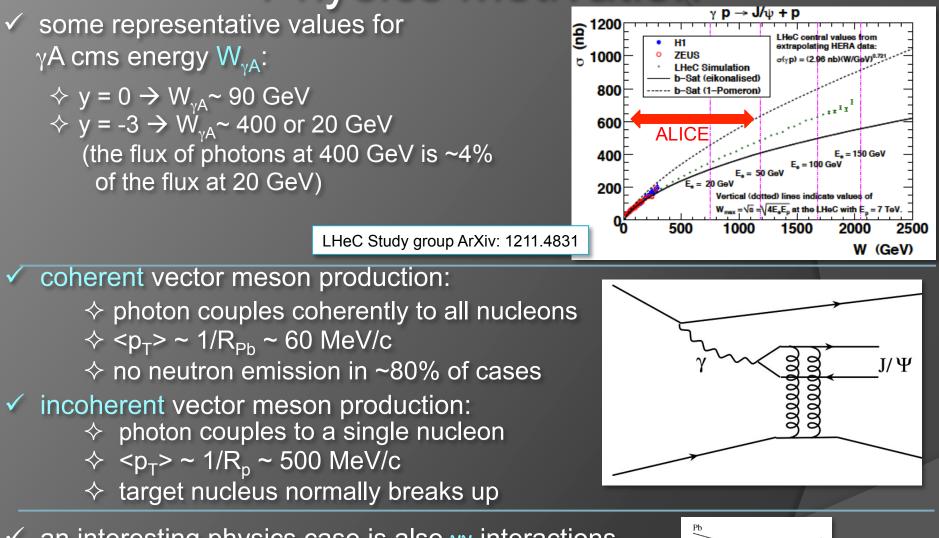
 virtuality of the photon dependent on the radius of the emitting particle:

$$Q^{2} \approx \left(\frac{\hbar c}{R}\right)^{2}$$

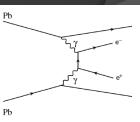
 $\gamma \text{ from p } \rightarrow Q^{2} \approx (250 MeV)^{2}$
 $\gamma \text{ from Pb } \rightarrow Q^{2} \approx (30 MeV)^{2}$

Physics motivation

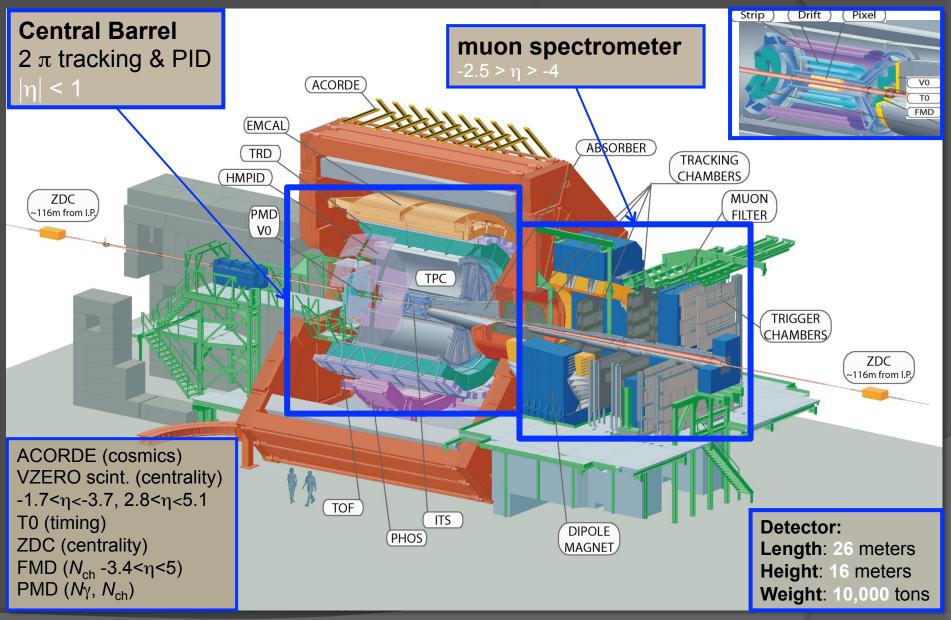
- ✓ possibility to study non linear effects at low x in the gluon distribution of the target
- ✓ quarkonia photo-production allows to study the gluon density G(x,Q²) in Pb


$$\frac{d\sigma(\gamma N \to VN)}{dt} \bigg|_{t=0} \approx \frac{\alpha_s \Gamma_{ee}}{3\alpha_e M_V^5} 16\pi^3 \left(xG(x,Q^2) \right)^2$$

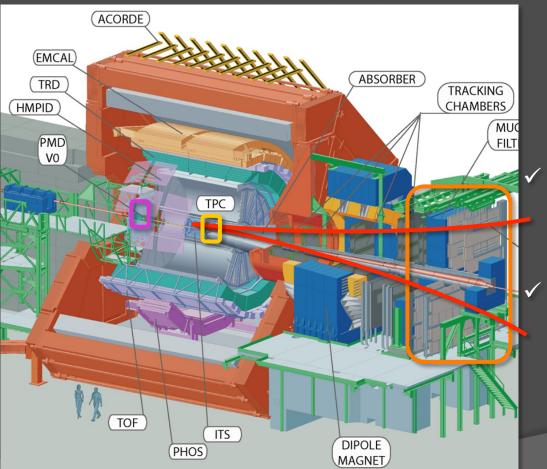
✓ Bjorken-*x* accessible at LHC x = (M_V/√s_{NN})exp(±y) ~ 10⁻² - 10⁻⁵
 ✓ vector meson photo-production as tool to measure nuclear gluon shadowing and saturation

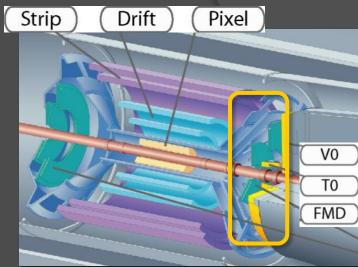

$$R_{g}^{A}(x,Q^{2}) = \frac{G_{A}(x,Q^{2})}{G_{p}(x,Q^{2})}$$
o et al 2012 J. Phys. G.: Nucl. Part. Phys. **39** 015010

C A Salgad


Physics motivation

✓ an interesting physics case is also $\gamma\gamma$ interactions to provide informations on QED processes when $\sqrt{\alpha}$ is replaced by Z $\sqrt{\alpha}$

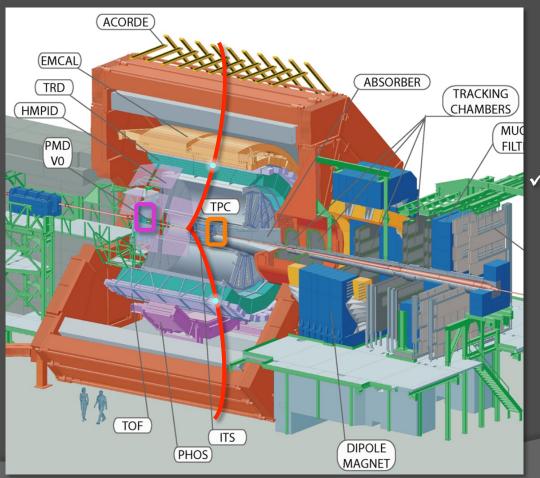


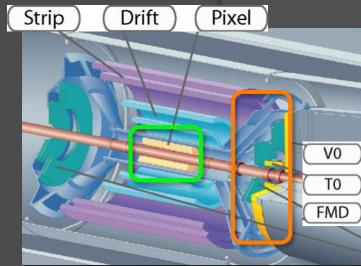

ALICE layout

ALICE and UPCs $(J/\psi \rightarrow \mu^+\mu^-)$

UPC forward trigger: \diamond single muon trigger with p_T > 1 GeV/c (-4<η<-2.5) \diamond hit in VZERO-C (-3.7<η<-1.7) \diamond no hits in VZERO-A (2.8<η<5.1)

integrated luminosity ~ 55 µb⁻¹

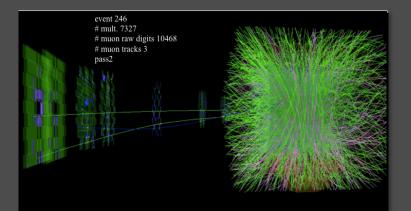

- offline event selection:
 - \diamond beam gas rejection with VZERO
 - ♦ hadronic rejection with ZDC and SPD


track selection:

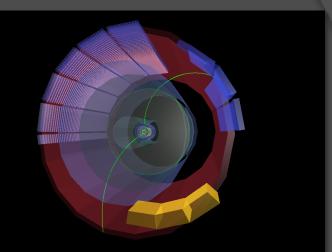
- ♦ muon tracks: -3.7 < η < -2.5</p>
- ♦ matching with the trigger
- ♦ radial position for muons at the end of absorber: 17.5 < R_{abs}< 89.5 cm
- \diamond p_T dependent DCA cut
- \diamond opposite sign dimuon: -3.6 < y < -2.6

ALICE and UPCs $(J/\psi \rightarrow \mu^+\mu^- \text{ and } J/\psi \rightarrow e^+e^-)$

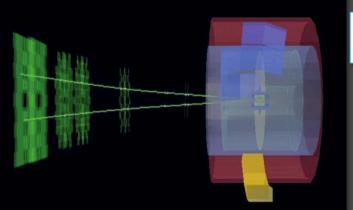
UPC mid-rapidity trigger:
◇ ≥ 2 hits in SPD
◇ 2≤ TOF hits ≤6 and back-to-back topology
◇ veto on VZERO-C and VZERO-A



integrated luminosity ~ 23 µb⁻¹


offline event selection:

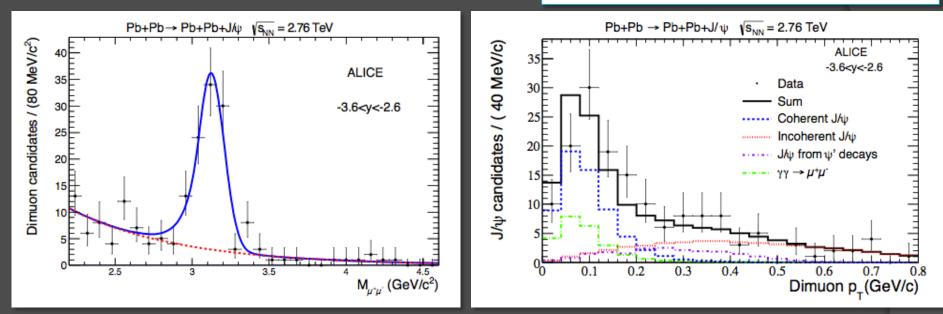
- ♦ rejection with VZERO and FMD
- \diamond primary vertex
- \Rightarrow max (p_{T1}, p_{T2}) > 1 GeV/c
- \diamond dE/dx consistent with e/ μ
- ♦ opposite sign tracks
- ZDC cut on number of neutrons emitted in coherent events


ALICE and UPCs

central Pb-Pb collision

UP Pb-Pb collision at mid-rapidity

two tracks in an otherwise empty detector


detailed studies done to understand the noise and the emptiness of the detector

UP Pb-Pb collision at forward rapidity

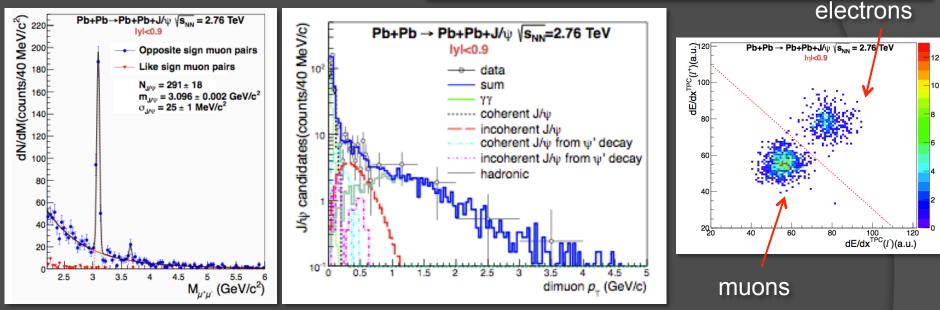
J/ψ measurements (coherent at forward rapidity) first measurement of J/ ψ photo-production done at LHC

Phys. Lett. B718 (2013) 1273 -1283

10

 p_T distribution fitted using MC samples representing several components:

- $\diamond~$ coherent and incoherent J/ ψ
- $\Leftrightarrow \psi$ ' feed down
- $\Leftrightarrow \ \gamma\gamma \rightarrow \mu^{\scriptscriptstyle +}\mu^{\scriptscriptstyle -}$


distribution peaked at low momentum as expected from coherent production

 J/ψ photo-production probes the gluon distribution in Pb at x~10^{-2}

J/ψ measurements (coherent at mid-rapidity)

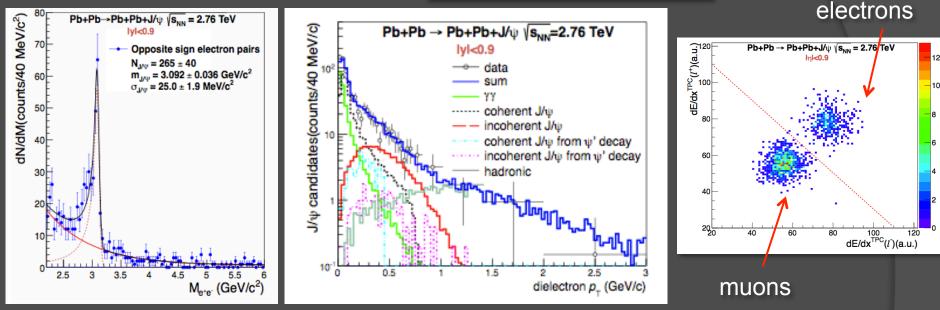
dimuon channel

arXiv:1305.1467 [nucl-ex] submitted to EPJ-C

 p_T distribution fitted using MC samples representing several components:

- \diamond coherent and incoherent J/ ψ
- $\diamond~$ (coherent and incoherent) ψ' feed down
- $\Leftrightarrow \ \gamma\gamma \rightarrow \mu^+\mu^-$
- ♦ hadronic

 p_T < 200 MeV/c and < 6 neutrons emitted by nuclei


distribution peaked at low momentum as expected from coherent production

 J/ψ photo-production probes the gluon distribution in Pb at x~10^{-3}

J/ψ measurements (coherent at mid-rapidity)

dielectron channel

arXiv:1305.1467 [nucl-ex]

 p_T distribution fitted using MC samples representing several components:


- $\diamond~$ coherent and incoherent J/ ψ
- $\diamond~$ (coherent and incoherent) ψ' feed down
- ♦ hadronic

 p_T < 300 MeV/c and < 6 neutrons emitted by nuclei

distribution peaked at low momentum as expected from coherent production

 J/ψ photo-production probes the gluon distribution in Pb at x~10^{-3}

Results and comparison with models

✓ AB: Adeluyi and Bertulani, PRC85 (2012) 044904

these models use LO pQCD scaled by an effective constant to correct for missing contributions MSTW08 assumes no nuclear effects, EPS08/09 incorporate nuclear effects according to different parametrizations

✓ CSS: Cisek, Szczurek, Sch.fer PRC86 (2012) 014905
 color dipole model based on unintegrated gluon distribution of the proton

data are closer to models incorporating nuclear gluon shadowing

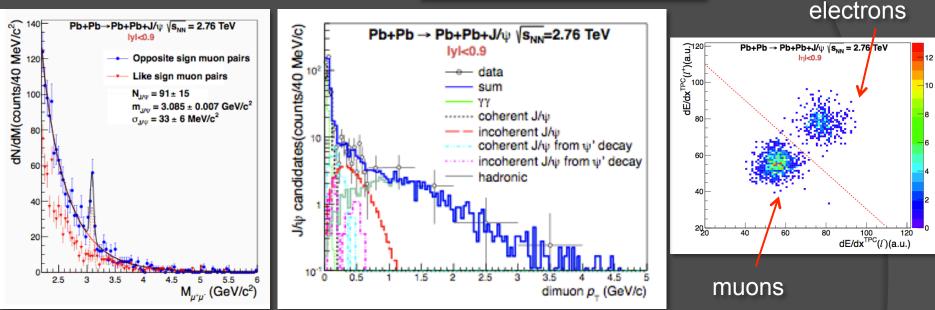
✓ STARLIGHT: Klein, Nystrand PRC60 (1999) 01493

GVDM coupled to a Glauber approach and using HERA data to fix the γp cross section

✓ GM: Goncalves, Machado, PRC84 (2011) 011902

color dipole model, where the dipole nucleon cross section is from the IIM saturation model

RSZ: Rebyakova, Strikman, Zhalov, PLB 710 (2012) 252


based on LO pQCD amplitude for two gluon exchange where the gluon density incorporates shadowing computed in leading twist approximation

J/ψ measurements (incoherent at mid-rapidity)

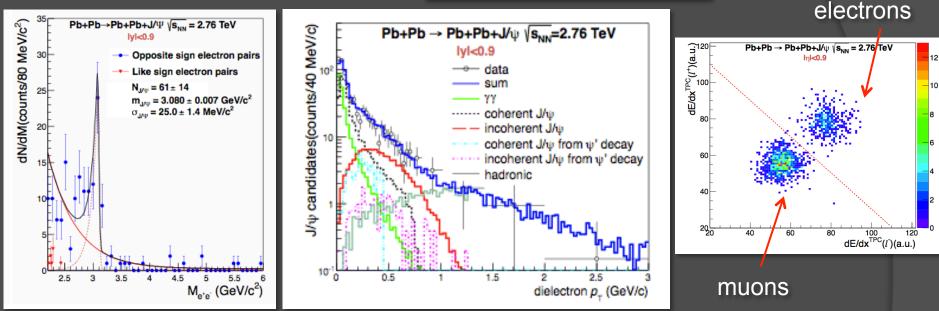
dimuon channel

arXiv:1305.1467 [nucl-ex]

p_T > 200 MeV/c

 p_T distribution fitted using MC samples representing several components:

- $\diamond~$ coherent and incoherent J/ ψ
- $\diamond~$ (coherent and incoherent) ψ' feed down
- $\Leftrightarrow \ \gamma\gamma \rightarrow \mu^+\mu^-$
- ♦ hadronic

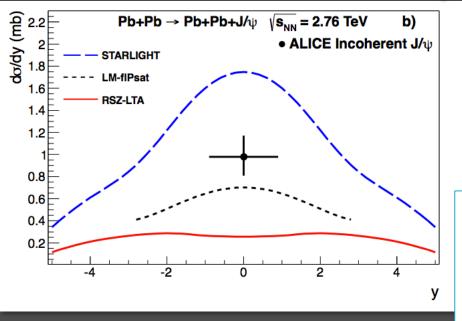

the ratio $\sigma_{\text{inc}}/\sigma_{\text{coh}}$ provides further constraints on the treatment of the nuclear modifications implemented in the different models

J/ψ measurements (incoherent at mid-rapidity)

dielectron channel

arXiv:1305.1467 [nucl-ex]

p_T > 300 MeV/c



 p_T distribution fitted using MC samples representing several components:

- \diamond coherent and incoherent J/ ψ
- $\diamond~$ (coherent and incoherent) ψ' feed down
- \diamond $\gamma\gamma \rightarrow e^+e^-$
- ♦ hadronic

the ratio $\sigma_{\text{inc}}/\sigma_{\text{coh}}$ provides further constraints on the treatment of the nuclear modifications implemented in the different models

Results and comparison with models

arXiv:1305.1467 [nucl-ex]

$$y < 0.9 \rightarrow d\sigma_{J/\psi}^{inc} / dy = 0.98^{+0.19}_{-0.17} (stat + syst) \text{ mb}$$

♦ none of the three existing models predicts the incoherent cross section correctly

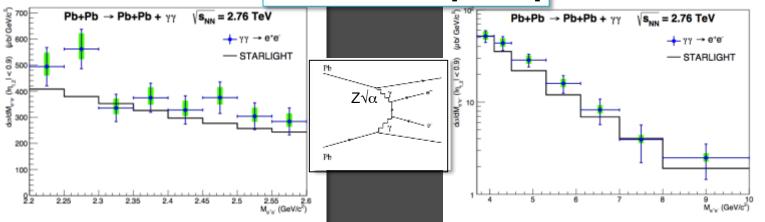
♦ STARLIGHT predicts a correct incoherent-to-coherent ratio (0.41)
♦ ALICE measurement $0.41^{+0.10}_{-0.08}(stat + syst)$

✓ STARLIGHT: Klein, Nystrand PRC60 (1999) 01493

GVDM coupled to a Glauber approach and using HERA data to fix the γp cross section

✓ RSZ: Rebyakova, Strikman, Zhalov, PLB 710 (2012) 252

based on LO pQCD amplitude for two gluon exchange where the gluon density incorporates shadowing computed in leading twist approximation


✓ LM: Lappi, Mantysaari, PRC87 (2013) 032201

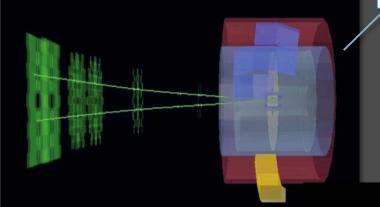
color dipole model based with Glauber approach and a saturation prescription

the ratio $\sigma_{\text{inc}}/\sigma_{\text{coh}}$ provides further constraints on the treatment of the nuclear modifications implemented in the different models

yy cross section

arXiv:1305.1467 [nucl-ex]

✓ the γγ cross section measurement provides important constraints on QED calculations when the vertex √α has to be replaced by Z√α

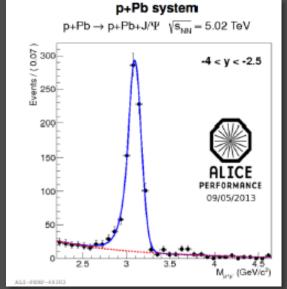

✓ due to the large Pb charge, giving $Z\sqrt{\alpha} \sim 0.6$, the inclusion of higher order terms is not straightforward → the models including higher order terms predict a reduction of the cross section up to 30%

 the measured values for the γγ cross sections are 20% above but fully compatible within 1.0 σ and 1.5 σ with the STARLIGHT (LO) prediction for the low and high invariant mass intervals (128 µb and 77 µb)

> → the models predicting a strong contribution of higher-order terms (not included in STARLIGHT) are not favored

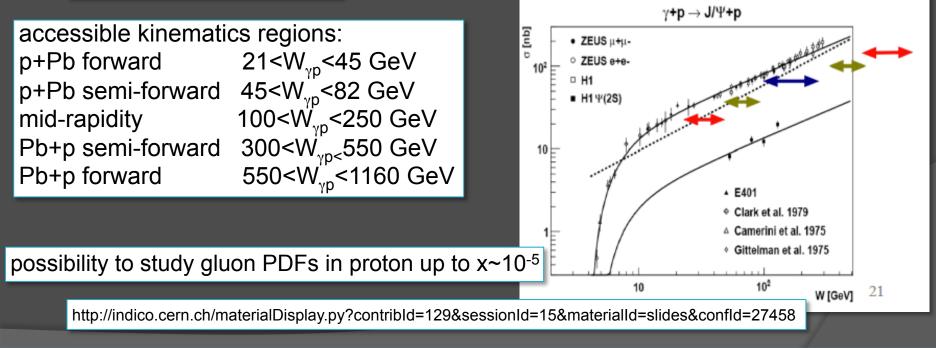
UPCs in pA

forward rapidity $(J/\psi \rightarrow \mu^+\mu^-)$


semi-forward rapidity $(J/\psi \rightarrow \mu^+\mu^-)$

trigger logic:

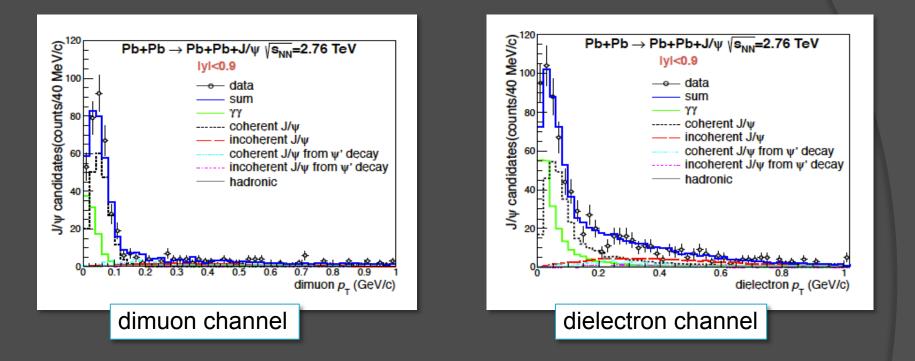
- ✓ similar to Pb+Pb case for forward and mid-rapidities, but improved purity
- ✓ semi-forward
 - ♦ veto on V0A and V0C (≥5 cells)
 - ↔ veto on SPD multiplicity (≥ 7 outer chips)
 - \Rightarrow single muon with p_T>0.5GeV/c
 - ♦ SPD (\geq 1 chips)


mid-rapidity $(J/\psi \rightarrow \mu^+\mu^-)$ and $J/\psi \rightarrow e^+e^-$

UPCs in pA

J/ψ photoproduction dominated by γ+p process

- ✓ first results at forward rapidity
- ✓ analysis ongoing for central and semi-forward samples



Conclusions

- \checkmark LHC as γ Pb and γ p collider to study $\gamma\gamma$, photo-nuclear and γ p processes
- ✓ measurement of exclusive vector meson (J/ ψ) cross sections to investigate the gluon distribution in the nuclei
- ✓ results seem to favor models including gluon shadowing
- γγ cross section to set limits on higher order terms in QED processes
- ✓ two ALICE papers:
 - ♦ Phys. Lett. B718 (2013) 1273-1283
 ♦ arXiv:1305.1467 [nucl-ex]
- \checkmark on going analyses:
 - ◇ J/ψ cross section in p+Pb and Pb+p collisions for three different topologies (central, forward and semi-forward) → this allows J/ψ photoproduction measurement in γp in a wide range of center of mass energy ([20,1000] GeV)
 ◇ ρ⁰ cross section in Pb+Pb collisions

back up

p_T distributions (linear scale)

 p_T distribution fitted using MC samples representing several components:

- \diamond coherent and incoherent J/ ψ
- $\diamond~$ (coherent and incoherent) ψ' feed down
- $\Leftrightarrow \gamma\gamma \rightarrow \mu^{+}\mu^{-}$
- ♦ hadronic

distribution peaked at low momentum as expected from coherent production

Feed down ($\psi' \rightarrow J/\Psi + anything$)

- ✓ fraction f_D of J/Ψ coming from the decay of $\psi' \rightarrow J/\Psi$ + anything estimated by simulating a sample of coherently produced ψ' with STARLIGHT, using PYTHIA to simulate their decay into J/Ψ
- ✓ contribution from incoherent ψ ' expected to be negligible for the enriched coherent J/ Ψ samples → not considered
- ✓ ψ' polarization can be shared between J/ Ψ and the other daughters → ψ' decay simulated assuming no polarization, full transverse and full longitudinal polarization for the J/ Ψ

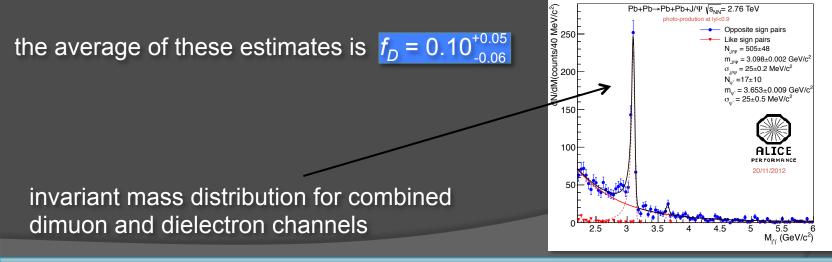
for a given polarization P:

$$f_D^P = \frac{\sigma_{\psi'} \cdot BR(\psi' \to J/\psi + \text{anything}) \cdot (Acc \times \varepsilon)_{\psi' \to J/\psi}^P}{\sigma_{J/\psi} \cdot (Acc \times \varepsilon)_{J/\psi}}$$

23

see table in the next slide for the results

Feed down ($\psi' \rightarrow J/\Psi + anything$)


alternatively the ratio ψ ' over J/ Ψ , used to compute the feed-down f_{D} , can be extracted from the data

due to the limited statistics the two decay channels were combined:

 $N_{w'} = 17 \pm 10$ and $N_{J/w} = 505 \pm 48$

$$f_D^P = \frac{N_{\psi'} \cdot BR(J/\psi \to l^+l^-) \cdot BR(\psi' \to J/\psi + \text{anything}) \cdot (Acc \times \varepsilon)_{\psi' \to J/\psi}^P}{N_{J/\psi} \cdot BR(\psi' \to l^+l^-)(Acc \times \varepsilon)_{\psi' \to l^+l^-}^P}$$

→ f_D ranges from 11.0±6.5% for transverse ψ ' polarization to 15±9% for longitudinal ψ ' polarization

Fit procedure

- exponential for underlying continuum (systematics evaluated using polynomial)
- ✓ Crystall Ball (exp+gauss) to extract the J/ Ψ signal
- ✓ tail CB parameters (α and n) left free for the coherent sample (systematics evaluated fixing the paramters) and fixed to MC values for the incoherent one
- ✓ incoherent dimuons fitted also using a polynomial to take into account the combinatorial background, as constrained to the LS pair spectrum
- ✓ fit also constrained to a MC cocktail (J/ Ψ + $\gamma\gamma$)