Prospects for NNLO measurements

using jets at the LHC

Nigel Glover

IPPP, Durham University

DESY Hamburg, 24 January 2013

Contents

- Overview
- Status of fixed order parton-level predictions
- Motivation for NNLO corrections to LHC processes
- Applications to LHC processes
 - and what to measure to make the most of improved theoretical and experimental precision
- Outlook

The HEP Arena

– p. 3

The Task for Theoretical HEP

$\textbf{Complexity} \sim \textbf{\#legs} + \textbf{\#loops}$

Theoretical Framework

 $\sigma(Q^2) = \int \sum_{i,j} \left[d\hat{\sigma}_{ij}(\alpha_s(\mu_R), \mu_R^2/Q^2, \mu_F^2/Q^2) \otimes f_i^p(\mu_F) \otimes f_j^p(\mu_F) \right]$

- ✓ partonic cross sections $d\hat{\sigma}_{ij}$
- \checkmark running coupling $\alpha_s(\mu_R)$
- ✓ parton distributions $f_i(x, \mu_F)$

- / renormalization/factorization scale μ_R , μ_F
- ✓ jet algorithm + parton shower + hadronisation model + underlying event + ...

The challenge

- Everything at the LHC (signals, backgrounds, luminosity measurement) involves QCD
- ✓ Strong coupling is not small: $\alpha_s(M_Z) \sim 0.12$ and running is important
 - \Rightarrow events have high multiplicity of hard partons
 - ⇒ each hard parton fragments into a cluster of collimated particles jet
 - ⇒ higher order perturbative corrections can be large
 - ⇒ theoretical uncertainties can be large
- ✓ Processes can involve multiple energy scales: e.g. p_T^W and M_W
 - \Rightarrow may need resummation of large logarithms
- Parton/hadron transition introduces further issues, but for suitable (infrared safe) observables these effects can be minimised
 - \Rightarrow importance of infrared safe jet definition
 - \Rightarrow accurate modelling of underlying event, hadronisation, ...

SM cross sections at the LHC Ellis (10)

✓ Includes decay of W/Z to one species of charged lepton and semi-leptonic decay of top ($t \rightarrow b \ell \nu$) (where applicable) and jets, $E_T > 25$ GeV

Matching onto Physics Goals

Twin Goals:

- 1. Identification and study of New Physics
- 2. Precision measurements (e.g. α_s , PDF's) leading to improved theoretical predictions

increasing multiplicity and uncertainty backgrounds to new physics searches

precision measurements of fundamental quantities α_s, m_t, M_W , new physics parameters determination of auxiliary observables PDF's

Progress over past few years

Limitations of Tree Level

Very large uncertainty for multiparticle final states

- **X** Large renormalisation scale uncertainty, magnified by the large amount of radiation e.g. a $\pm 10\%$ uncertainty in α_s leads to a $\pm 30\%$ uncertainty for W + 3 jets
- Large factorisation scale uncertainty higher factorisation scales deplete partons at large x - may increase or decrease cross section
- Both of these effects change the shapes of distributions
- Partly stabilised by going to NLO
- ✓ New channels open up at higher orders qg + large gluon PDF
- ✓ Increased phase space allows more radiation
- ✓ Large π^2 coefficients in *s*-channel \Rightarrow large NLO corrections 30% 100%

NLO - the new standard

Anatomy of a NLO calculation

- ✓ one-loop 2 → 3 process
 - ✓ explicit infrared poles from loop integral
 - ✓ looks like 3 jets in final state
- \checkmark tree-level $2 \rightarrow 4$ process
 - ✓ implicit poles from soft/collinear emission
 - ✓ looks like 3 or 4 jets in final state

- plus method for combining the infrared divergent parts
 - dipole subtraction
 Catani, Seymour; Dittmaier, Trocsanyi, Weinzierl, Phaf
 - residue subtraction
 Frixione, Kunszt, Signer
 - antenna subtraction Kosower; Campbell, Cullen, NG; Daleo, Gehrmann, Maitre
- automated subtraction tools Gleisberg, Krauss (SHERPA); Hasegawa, Moch, Uwer (AutoDipole); Frederix, Gehrmann, Greiner (MadDipole); Seymour, Tevlin (TeVJet), Czakon, Papadopoulos, Worek (Helac/Phegas) and Frederix, Frixione, Maltoni, Stelzer (MadFKS)
- So far **bottleneck** has been one-loop matrix elements

The one-loop problem

Any (massless) one-loop integral can be written as

$$= \sum_{i} d_{i}(D) + \sum_{i} c_{i}(D) + \sum_{i} b_{i}(D) - O$$

 $\mathcal{M} = \sum d(D) \operatorname{boxes}(\mathbf{D}) + \sum c(D) \operatorname{triangles}(\mathbf{D}) + \sum b(D) \operatorname{bubbles}(\mathbf{D})$

- ✓ higher polygon contributions drop out
- ✓ scalar loop integrals are known analytically around D = 4 Ellis, Zanderighi (08)
- ✓ need to compute the *D*-dimensional coefficients d(D) etc.

The problem is complexity - the number of terms generated is too large to deal with, even with computer algebra systems, and there can be very large cancellations.

Unitarity for one-loop diagrams

Several important breakthroughs

✓ Sewing trees together

Bern, Dixon, Dunbar, Kosower (94)

✓ Freezing loop momenta with quadruple cuts

Britto, Cachazo, Feng (04)

✓ OPP tensor reduction of integrand

Ossola, Pittau, Papadopoulos (06)

✓ D-dimensional unitarity

Giele, Kunzst, Melnikov (08)

\implies automation

HELAC/CutTools, Rocket, BlackHat+SHERPA, GoSam+SHERPA/MADGRAPH, NJet+SHERPA, MADLOOPS+MADGRAPH

Numerical recursion for one-loop diagrams

Breakthroughs on the "traditional" side

✓ One-loop Berends-Giele recursion

van Hameren (09)

Recursive construction of tensor numerator Cascioli, Maierhöfer, Pozzorini (11)

 \implies automation

OpenLoops+SHERPA, RECOLA

NLO - the new standard

- A lot of progress, and the "best" solution is still to emerge. In the meantime, there are public codes with NLO capability that could only be dreamed of a few years ago.
- ✓ See http://indico.cern.ch/conferenceOtherViews.py?view=standard&confld=212260 for more details.

(m)		- 116 - 111	non Modile El			SHERPA	Process	BlackHat	GoSam	OpenLoops
Eile Edit View History Bookmarks To	ols <u>H</u> elp	aMC@NLO we	o page - Mozilla Fi	refox	_ = ×			< 0		
AMC@NLO web page				v 		Jets	≤ 3		≤ 4	
amcatnio.web.cem.ch/amcatnio/				☆ ♥ 🕄 🚮 ♥ Go	oogle 😤 🕋		$\gamma+jets$	≤ 3	≤ 2	≤ 3
aMC@NLO web page						3	$\gamma \gamma+$ jets V $+$ jets	$\leq 2 \leq 4$	≤ 3	$\leq 2 \leq 3$
The project	Optimized process-specific aMC@NLO codes						$V + b\bar{b}$ +jets	—	≤ 1	≤ 1
People							<i>VV</i> + jets	≤ 2	≤ 2	≤ 2
Contact News	Here you find a col cases, virtuals can	lection of not yet be	aMC@NLO coc calculated	les dedicated to key processes by MadLoop (for example for H	at the LHC. In some iggs production in the		$V\gamma$ +jets	_	≤ 2	≤ 2
MC Tools (registration needed)	Higgs Effective Fie MadLoop. We stress virtuals are still	ld Theory) that all c obtained w	, while in c ontributions ith aMC@NLO,	thers analytic expressions mi to the cross sections except by generating the process wi	ght be faster than the finite part of the th the [real=OCD]		$W^{\pm}W^{\pm}qq$	_	0	0
Download aMC@NLO	Download aMC@NLO codes listed here provide explicit examples on how to interface aMC@NLO with BLHA-compliant						VV'V''	_	—	≤ 1
Event samples DB Special Codes	external codes for	one-loop c	orrections	1	1		<i>tt</i> +jets	—	≤ 1	≤ 1
Communication	Process Higgs characterization.	Codes	Plots	Extra info	i i		$t\overline{t} + V$ +jets	_	—	≤ 1
Citations Publications	Comparison plots: <u>pt of the "H</u> $pp \rightarrow 0^+ + X$	Gode	aWCENLO+Pythia	Virtuals coded by hand by R. Prederix and N. Saro from the known analytic results. Scalar			tb [†]	_	_	≤ 1
Talks & Seminars			40.0000101414	resonance. Process generated in the HEFT model Virtuals coded by hand by R. Frederix and N.			ti [†]	_	_	< 1
Resources	$pp ightarrow 0^- + X$	Code	aMCENLO+Pythia aMCENLO+Horwig	Earo from the known analytic results. Pseudo scalar resonance. Process generated in the HEFT model			tW [†]	_		_ < 1
File Sharing	$pp \rightarrow 1^- + X$	Code	aMCENLO+Pythia aMCENLO+Rervig	Fully automatic in aMCONIO, Vector resonance (Obtained from the X using only vector coupling to quarks).			h+jets	< 2	< 2	
	$pp ightarrow 1^+ + X$	Code	aMCBNLO+Pythia aMCBNLO+Berwig	Fully automatic in aNCONIO. Pseudo vector resonance (Obtained from the 2 using only axial coupling to quarks).	-		WBF: hqq'		_	≤ 1
	$pp ightarrow (2^+ ightarrow \gamma\gamma) + X$	Code	aMCBNLO+Pythia aMCBNLO+Pythia	Virtuals Provided by Prederix et al. <u>arXiv:1209.6527</u> Code generated using the RS model. Spin 2 (graviton like)			VH	—	—	≤ 1
	More to come soon					e	tth	—		0
							$gg \rightarrow 4\ell$	_	0	0

NNLO calculations for $2 \rightarrow 2 \text{ processes}$

$$d\sigma = \sum_{i,j} \int \frac{d\xi_1}{\xi_1} \frac{d\xi_2}{\xi_2} f_i(\xi_1, \mu_F^2) f_j(\xi_2, \mu_F^2) d\hat{\sigma}_{ij}(\alpha_s(\mu_R), \mu_R, \mu_F)$$

$$\mathrm{d}\hat{\sigma}_{ij} = \mathrm{d}\hat{\sigma}_{ij}^{LO} + \left(\frac{\alpha_s(\mu_R)}{2\pi}\right)\mathrm{d}\hat{\sigma}_{ij}^{NLO} + \left(\frac{\alpha_s(\mu_R)}{2\pi}\right)^2\mathrm{d}\hat{\sigma}_{ij}^{NNLO} + \mathcal{O}(\alpha_s^3)$$

Processes of interest

- ✓ $pp \rightarrow 2$ jets
- $\checkmark \quad pp \to \gamma \text{+jets}$
- $\checkmark \quad pp \to \gamma \gamma$
- ✓ $pp \to V+jet$
- $\checkmark \quad pp \to t\bar{t}$

. . .

- $\checkmark \quad pp \to VV$
- ✓ $pp \to H+jet$

Massively reduced theoretical error Anastasiou, Dixon, Melnikov, Petriello (04)

Motivation for NNLO computations

- Reduced renormalisation scale dependence
- Event has more partons in the final state so perturbation theory can start to reconstruct the shower
 - \Rightarrow better matching of jet algorithm between theory and experiment

✓ Reduced power correction as higher perturbative powers of $1/\ln(Q/\Lambda)$ mimic genuine power corrections like 1/Q

Motivation for NNLO computations

 Better description of transverse momentum of final state due to double radiation off initial state

- ✓ At LO, final state has no transverse momentum
- Single hard radiation gives final state transverse momentum, even if no additional jet
- ✓ Double radiation on one side, or single radiation of each incoming particle gives more complicated transverse momentum to final state
- ✓ NNLO provides the first serious estimate of the error

✓✓✓ and most importantly, the volume and quality of the LHC data!!

Anatomy of a NNLO calculation e.g. $pp \rightarrow 2j$

- ✓ double real radiation matrix elements $d\hat{\sigma}_{NNLO}^{RR}$ ✓ implicit poles from double unresolved emission
- single radiation one-loop matrix elements $d\hat{\sigma}_{NNLO}^{RV}$
 - ✓ explicit infrared poles from loop integral
 - ✓ implicit poles from soft/collinear emission
- ✓ two-loop matrix elements $d\hat{\sigma}_{NNLO}^{VV}$
 - ✓ explicit infrared poles from loop integral
 - ✓ including square of one-loop amplitude

$$\mathrm{d}\hat{\sigma}_{NNLO} \sim \int_{\mathrm{d}\Phi_{m+2}} \mathrm{d}\hat{\sigma}_{NNLO}^{RR} + \int_{\mathrm{d}\Phi_{m+1}} \mathrm{d}\hat{\sigma}_{NNLO}^{RV} + \int_{\mathrm{d}\Phi_m} \mathrm{d}\hat{\sigma}_{NNLO}^{VV}$$

✓ Antenna method to extract implicit poles developed for $e^+e^- \rightarrow 3$ jets

NNLO - double virtual

/ small number of two loop matrix elements known

/
$$2
ightarrow 1$$
: $q \bar{q}
ightarrow V$, $g g
ightarrow H$, $(q \bar{q}
ightarrow V H)$

- ✓ 2 → 2: massless parton scattering, e.g. $gg \to gg$, $q\bar{q} \to gg$, etc
- ✓ 2 → 2: processes with one offshell leg, e.g. $q\bar{q} \rightarrow V$ +jet, $gg \rightarrow H$ +jet
- ✓ 2 → 2: $q\bar{q} \rightarrow t\bar{t}$, $gg \rightarrow t\bar{t}$ known numerically Bärnreuther, Czakon, Mitov

✓
$$2 \rightarrow 2$$
: $q\bar{q} \rightarrow VV$, $gg \rightarrow VV$ in progress

?? Automation

- **X** Basis set of integrals not known!
 - search for basis set and generalisations of new methods from one-loop

Gluza, Kajda, Kosower (10); Mastrolia, Ossola (11); Kosower, Larsen (11); Badger,

- Frellesvig, Zhang (12); Larsen; Caron-Huet (12), Larsen (12); Zhang (12); Mastrolia,
- Mirabella, Ossola, Peraro (12); Kleiss, Malamos, Papadopoulos, Verheyn (12);
- Johansson, Kosower, Larsen (12); Feng, Huang (12)

IR subtraction at NNLO

 \checkmark The aim is to recast the NNLO cross section in the form

$$d\hat{\sigma}_{NNLO} = \int_{d\Phi_{m+2}} \left[d\hat{\sigma}_{NNLO}^{RR} - d\hat{\sigma}_{NNLO}^{S} \right] + \int_{d\Phi_{m+1}} \left[d\hat{\sigma}_{NNLO}^{RV} - d\hat{\sigma}_{NNLO}^{T} \right] + \int_{d\Phi_{m}} \left[d\hat{\sigma}_{NNLO}^{VV} - d\hat{\sigma}_{NNLO}^{U} \right]$$

where the terms in each of the square brackets is finite, well behaved in the infrared singular regions and can be evaluated numerically.

NNLO - double real

- / IR subtraction schemes
 - ✓ sector decomposition Heinrich; Anastasiou, Melnokov, Petriello; Binoth, Heinrich
 - $pp \rightarrow H$, $pp \rightarrow V$ Anastasiou, Melnikov, Petriello; Melnikov, Petriello; Anastastiou, Dissertori, Stockli; Anastasiou, Herzog, Lazopoulos
 - \checkmark q_T subtraction

Catani, Grazzini

- $pp \rightarrow H$, $pp \rightarrow V$, $pp \rightarrow VH$, $pp \rightarrow \gamma\gamma$

Grazzini; Catani, Cieri, Ferrera, de Florian, Grazzini; Catani, Ferrera, Grazzini; Fererra, Grazzini, Tramontano; Catani, Cieri, de Florian, Ferrera, Grazzini

- ✓ STRIPPER sector improved residue subtraction Czakon $pp \rightarrow t\bar{t}$ Czakon; Czakon, Mitov
- ✓ Antenna subtraction Gehrmann, Gehrmann-De Ridder, NG
 - $e^+e^- \rightarrow 3$ jet Gehrmann, Gehrmann-De Ridder, NG, Heinrich; Weinzierl
 - $pp \rightarrow 2$ jet

Pires, NG; Gehrmann-De Ridder, Pires, NG; Gehrmann, Gehrmann-De Ridder, Pires, NG

IR subtraction at NNLO

- ✓ X_4^0 and X_3^1 antenna and their integrals \mathcal{X}_4^0 and \mathcal{X}_3^1
- Much more complicated cancellations between the double-real, real-virtual and double virtual contributions - but now well understood

Currie, Wells, NG

$e^+e^- \rightarrow 3~{\rm jets}$ at NNLO

Method thoroughly tried and tested for partons only in the final state Gehrmann-De Ridder, Gehrmann, Heinrich, NG (07)

- ✓ NNLO corrections to jet rate small
 - stable perturbative prediction
 - resummation not needed
 - ✓ theory error below 2%
 - small hadronisation corrections
- $\checkmark \alpha_s$ extraction from jet rates

Dissertori, Gehrmann-De Ridder, Gehrmann, Heinrich, Stenzel, NG (09)

- $\checkmark \quad \text{fit at } y_{cut} = 0.02$
- \checkmark consistent results at other y_{cut}

 $\alpha_s(M_Z) = 0.1175 \pm 0.0020(exp) \pm 0.0015(th)$

Preliminary results for gluons only dijets at NNLO

Gehrmann-De Ridder, Gehrmann, Pires, NG, in preparation

- ✓ pp collisions at $\sqrt{s} = 8$ TeV
- \checkmark jets identified with anti- k_T algorithm with R = 0.7
- ✓ jets accepted with rapidities up to 4.4
- ✓ leading jet with transverse momentum $p_T > 80 \text{ GeV}$
- ✓ additional jets with transverse momentum $p_T > 60 \text{ GeV}$
- ✓ MSTW2008nnlo PDF set
- ✓ factorisation and renormalisation scales set equal to (multiple) of leading jet transverse momentum $\mu_R = \mu_F = \mu = p_{T1}$
- ✓ only gluonic matrix elements included
 - **!!** NLO and LO curves also gluons only, and using same α_s and PDF set

✓ |y| < 4.4: NNLO corrections 25-15% wrt NLO

|y| < 4.4, 80 GeV $< p_T <$ 97 GeV

✓ Scale variation much reduced for $0.5 < \mu/p_T < 2$.

- ✓ Scale variation much reduced for $0.5 < \mu/p_T < 2$.
- ✓ ... but depends on rapidity slice

✓ NNLO corrections \sim 25% wrt NLO

- \checkmark NNLO corrections ${\sim}25\%$ wrt NLO
- similar behavior for different repidity slices

 \checkmark NNLO corrections ${\sim}25\%$ wrt NLO

Applications to LHC processes

- ✓ All relevant matrix elements for $pp \rightarrow 2$ jet, $pp \rightarrow V + 1$ jet and $pp \rightarrow H + 1$ jet processes available for some time
- ✓ Can expect to have parton-level NNLO predictions for $pp \rightarrow 2$ jet, $pp \rightarrow V + 1$ jet and $pp \rightarrow H + 1$ jet in next couple of years
- Hope for significant reduction in theory (renormalisation scale/factorisation scale) dependence
- LHC already has increased dynamic range for jet studies rapidity, transverse energy.
- Combined with excellent experimental jet energy scale uncertainty, there
 is the opportunity for improved measurements of
 - Parton distributions
 - ✓ Strong coupling
 - ✓ Internal structure of the jet
 - Rapidity gaps between the jets

Traditional Jet Observables

- ✓ e.g. Double-differential inclusive jet cross section vs jet p_T and y
- ✓ using anti- k_T Particle Flow jets with R = 0.5
- ✓ p_T range up to 1.1 TeV (2011 data up to 2 TeV)
- NP correction (estimated by Pythia6 and Herwig++)
- Overall, data and theoretical predictions are compatible
- Data are described well by pQCD
 @ NLO in the TeV scale
 - ? But can we actually measure something of significance?

Measuring fundamental quantities with Jets

- Impressive control over experimental uncertainties
- ✓ With 2011 data CMS Jet Energy Scale Uncertainty below 1% for $p_T = 150 - 600$ GeV in barrel at |y| < 1.3.
- ⇒ Experimental uncertainties in Single Jet Inclusive distribution at the 5-10% level
- ⇒ Need for pQCD predictions at NNLO accuracy

Measuring the PDF's with Jets

- ✓ LHC range covers bigger range of Q² and x than previous experiments
- LHC detectors significantly better than earlier detectors
 - ? Is it possible to measure PDF's to NNLO precision using only high energy data?
 - ? Can enough measurements be made to constrain all the PDF's?
- ⇒ Need to systematically organise and study full data set!

Maximising the impact of NNLO calculations

Triple differential form for a $2 \rightarrow 2$ cross section

$$\frac{d^3\sigma}{dE_T d\eta_1 d\eta_2} = \frac{1}{8\pi} \sum_{ij} x_1 f_i(x_1, \mu_F) \ x_2 f_j(x_2, \mu_F) \ \frac{\alpha_s^2(\mu_R)}{E_T^3} \frac{|\mathcal{M}_{ij}(\eta^*)|^2}{\cosh^4 \eta^*}$$

✓ Direct link between observables E_T , η_1 , η_2 and momentum fractions/parton luminosities

$$x_1 = \frac{E_T}{\sqrt{s}} \left(\exp(\eta_1) + \exp(\eta_2) \right),$$

$$x_2 = \frac{E_T}{\sqrt{s}} \left(\exp(-\eta_1) + \exp(-\eta_2) \right)$$

 and matrix elements that only depend on

$$\eta^* = \frac{1}{2} \left(\eta_1 - \eta_2 \right)$$

Triple differential distribution

✓ Range of x_1 and x_2 fixed allowed LO phase space for jets $E_T \sim 200$ GeV at $\sqrt{s} = 7$ TeV

Shape of distribution can be understood by looking at parton luminosities and matrix elements (in for example the single effective subprocess approximation)

Giele, NG, Kosower, hep-ph/9412338 -p. 39

Phase space considerations

- ✓ Phase space boundary fixed when one or more parton fractions → 1.
 - I $\eta_1 > 0$ and $\eta_2 > 0$ OR $\eta_1 < 0$ and $\eta_2 < 0$
 - \Rightarrow one x_1 or x_2 is less than x_T small x
 - II $\eta_1 > 0$ and $\eta_2 < 0$ OR $\eta_1 < 0$ and $\eta_2 > 0$ \Rightarrow both x_1 and x_2 are bigger than x_T
 - large x
- III growth of phase space at NLO (if $E_{T1} > E_{T2}$)

$$\left[x_T^2 < x_1 x_2 < 1 \quad \text{and} \quad x_T = 2E_T / \sqrt{s} \right]$$

Measuring PDF's at the LHC?

Should be goal of LHC to be as self sufficient as possible! Study triple differential distribution for as many $2 \rightarrow 2$ processes as possible!

 \checkmark Medium and large x gluon and quarks

\checkmark	$pp ightarrow ext{di-jets}$	dominated by gg scattering
\checkmark	$pp ightarrow \gamma$ + jet	dominated by qg scattering
\checkmark	$pp \to \gamma \gamma$	dominated by $q\bar{q}$ scattering

- \checkmark Light flavours and flavour separation at medium and small x
 - ✓ Low mass Drell-Yan
 - \checkmark W lepton asymmetry
 - ✓ $pp \to Z + jet$
- ✓ Strangeness and heavy flavours

\checkmark	$pp \to W^{\pm} + c$	probes $s, \ \overline{s}$ distributions
\checkmark	$pp \to Z + c$	probes c distribution
\checkmark	$pp \to Z + b$	probes b distribution

Measurements of strong coupling

We can extract α_s using input PDF's (with varying α_s) fixed by DIS, etc e.g.

Measurements of strong coupling

- ✓ With incredible jet energy resolution, the LHC can do better!!
- ✓ by simultaneously fitting the parton density functions and strong coupling
- ✓ If the systematic errors can be understood, the way to do this is via the triple differential cross section

Giele, NG, Yu, hep-ph/9506442

✓ and add NNLO W^{\pm} +jet, Z+jet, γ +jet calculations (with flavour tagging) as they become available

D0 preliminary, 1994

NNLO applications to LHC processes - status

- ✓ All relevant matrix elements for $pp \rightarrow 2$ jet, $pp \rightarrow V + 1$ jet and $pp \rightarrow H$ +jet processes available for some time
- ✓ Aim to push "leading colour gluons-only" $pp \rightarrow 2$ jets all the way to the end to demonstrate proof of concept
- Double unresolved subtraction terms for leading colour six-gluon process tested

- (a) Example configuration of a triple collinear event with $s_{ijk} \rightarrow 0$.
- (b) Distribution of $d\hat{\sigma}_{NNLO}^{RR}/d\hat{\sigma}_{NNLO}^{S}$ for 10000 triple collinear phase space points.

– p. 44

NNLO applications to LHC processes - status

- Real Virtual subtraction terms for one-loop five-gluon process complete, explicit poles cancel and subtraction term cancels unresolved singularities
 Gehrmann-De Ridder, Pires, NG (11)
- ✓ Explicit poles in ϵ in double virtual subtraction term $d\hat{\sigma}_{NNLO}^U$ cancel against double virtual contribution $d\hat{\sigma}_{NNLO}^{VV}$ Gehrmann, Gehrmann-De Ridder, Pires, NG (12)
- ✓ Now have "leading colour gluons-only" $pp \rightarrow 2$ jet parton level monte carlo proof of concept for antenna subtraction method in hadron colliders
- In parallel, coding of sub-leading colour contributions, quark processes, $pp \rightarrow H + 1$ jet and $pp \rightarrow V + 1$ jet underway
- Looking to produce results in format that can be used for pdf fits (Ntuples, Applgrid, fastNLO, ...)

- X New Physics does not seem to be hiding in plain sight
- ✓ Demands better SM calculations to dig out complex signatures
- Incredible conceptual breakthroughs has produced a number of automated NLO solutions for multiparticle processes
- ✓ plus merging with parton showers, etc

CKKW, MLM, MCNLO, POWHEG, MENLOPS

- NLO QCD predictions establish a new standard of theoretical prediction for the LHC
- ✓ NNLO predictions are the new frontier, and results for 2 → 2 processes are in sight
- ✓ Challenge is to make precision measurements of α_s , PDF's, ...
- ✓ ... and increase sensitivity to more subtle signs of New Physics