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PLANCK MISSION

• Design goal: measure CMB ∆T to fundamental
limits on scales > 5 arcmin

• Launched (with Herschel) 14 May 2009

• HFI operated to January 2012 completing > 4

sky surveys

• LFI still operational

• Nine frequencies covering 30–857 GHz

• 3× resolution of WMAP

• ∼ 20× instantaneous sensitivity

• Nominal Planck survey 7× sensitivity of WMAP9
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PLANCK COLLABORATION
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PLANCK MAPS
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“PLANCK POWER SPECTRUM”

• l < 50: maximum-likelihood solution with parametric map-based foreground
cleaning

• l ≥ 50: best-fit Cl to all cross-spectra after fitting Cl-based foreground templates
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UNRESOLVED FOREGROUNDS AND HIGH-l EXPERIMENTS

• Major unresolved extra-Galactic (isotropic) foregrounds: radio and dusty (CIB)
galaxies and thermal SZ

• ACT and SPT spectra very helpful for constraining diffuse foreground contributions

• Beam uncertainties important for Planck at high-l 5



LCDM FIT

• Acceptable fit to channel spectra and composite spectrum: χ2 compatible with
LCDM to 1.6σ
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LCDM PARAMETERS
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• Percent-level precision

• Not limited by foreground modelling

• Main degeneracy: Ωmh3 = const.

– 0.06% precision on θ∗

• τ from TT (+lensing) alone
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BAO CONSISTENCY

6dF

SDSS DR7

SDSS DR7(R) BOSS

WiggleZ

DV(z) =

[
(1 + z)2D2

A(z)
cz

H(z)

]1/3

8



BBN CONSISTENCY
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PLANCK POLARIZATION CONSISTENCY
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PLANCK POLARIZATION CONSISTENCY
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2.5σ TENSION WITH HUBBLE CONSTANT

H0 = 67.3± 1.2 km s−1 Mpc−1 (68%; Planck+WP+highL; LCDM)
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TENSION WITH SNE IA?

• SNLS cleaner sample, but wants
Ωm = 0.23, 2σ discrepant with
Planck

– Degree of tension depends on
lightcurve fitter
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SDSS-SNLS JOINT SNE IA ANALYSIS

Reynald Pain, ESLAB April 2013
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TENSION WITH PLANCK CLUSTER COUNTS

• Planck XX (2013) constrains σ8(Ωm/0.27)0.3 = 0.78± 0.01 from 189 S/N > 7

SZ (confirmed) clusters

• Planck TT best-fit LCDM model over-predicts number of clusters:
σ8(Ωm/0.27)0.3 = 0.87± 0.02 (Planck+WP+highL)

– Issues with modelling selection function, YSZ–mass calibration etc?

– New physics?
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ANOMALOUS LOW-l POWER
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• 2–3σ evidence for low power relative to LCDM best-fit on large scales

– Internal tension that gives a number of 2σ results in extended models
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CONSTRAINTS ON INFLATION: ns
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ns = 0.958± 0.007 (68%; Planck+WP+highL; LCDM)

• ns < 1 robust to addition of running and tensors

• Robust to matter content (e.g. Neff and Helium) combining Planck with BAO
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CONSTRAINTS ON INFLATION: RUNNING
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dns/d ln k = −0.013± 0.009 (68%; Planck+WP)

dns/d ln k = −0.015± 0.009 (68%; Planck+WP+highL)

• Any preference for running is from low-l only

18



CONSTRAINTS ON INFLATION: TENSORS
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r0.002 < 0.11 (95%; Planck+WP+highL; no running)

r0.002 < 0.26 (95%; Planck+WP+highL; running)

• As good as you can do with TT (without running)
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EXTRA RELATIVISTIC DEGREES OF FREEDOM
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Neff = 3.36+0.68
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• Increasing Neff at fixed θ∗ reduces power in damping tail

– Necessarily increases expansion rate at low redshifts
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DYNAMICAL DARK ENERGY
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• No evidence for dynamical dark energy with Planck+BAO

– E.g. w = −1.13± 0.25 (95%; Planck+WP+BAO; w const.)

• Tension with SNLS or H0 pulls towards phantom dark energy (2σ)

– E.g. SNLS want lower d lnH/dz – lower Ωm or w < −1

21



PROBING THE DARK UNIVERSE WITH THE CMB

• Dark parameters (ΩΛ, ΩK ,
∑
mν, w etc.) affect primary anisotropies only through

DA(z∗)

• Break degeneracy with:

– Geometric probes – BAO, SNe, H0 etc.

– Probes of LSS – galaxy clustering, lensing, Lyα etc.
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LENS-INDUCED REMAPPING

• Lensing preserves brightness; simply re-maps temperature from recombination

T̃ (n̂) = T (n̂+α)

• Deflection is gradient, α = ∇φ, in Born approximation:

φ(n̂) = −
∫ χ∗

0
dχ(Φ + Ψ)(χn̂; η0 − χ)

χ∗ − χ
χχ∗

– R.m.s. deflection 〈α2〉1/2 = 2.4 arcmin

– Coherent over several degrees
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UNLENSED TEMPERATURE
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LENSED TEMPERATURE
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LENSING DIFFERENCE

∆T̃ (n̂) = α · ∇T + · · ·
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DARK PARAMETERS FROM CMB LENSING

• Lensing sensitive to geometry and late-time growth of structure: curvature

• Neutrino masses (non-relativistic at recombination for mν < 0.5 eV):
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LENSED TEMPERATURE POWER SPECTRUM

• Smooths acoustic peaks and generates small-scale power in damping tail
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LENSING DETECTED AT 10σ IN PLANCK TT
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LENSING RECONSTRUCTION

T̃ (n̂) = T (n̂) + αi∇iT + · · ·

• Basic idea: (fixed) lenses introduce anisotropic correlations in CMB

– Estimate αi with quadratic estimators ∼ T̃∇iT̃

Simulation Input

• Reconstruct projected distribution of dark matter over full sky to z = 1100

– Constrain dark parameters from power spectrum of reconstruction retaining full
shape information

– Cross-correlate with other LSS tracers (Smith et al. 2007; Bleem et al. 2012;
Sherwin et al. 2012) to probe bias etc.
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PLANCK’S FULL-SKY LENSING MAP

Mollweide view

• Weiner-filtered reconstruction based on 143+217 GHz map
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COSMOS SHEAR TOMOGRAPHY MAP

Massey et al (COSMOS)
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STATISTICAL NOISE LEVELS
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PLANCK LENSING POWER SPECTRUM

• > 25σ detection of non-zero power (via CMB 4-point function)

• Consistent with predicted CφL in LCDM from Planck TT

– χ2 = 10.9 (8 d.o.f.) for 40 ≤ L ≤ 400; PTE of 21%
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CURVATURE/DARK ENERGY FROM THE CMB ALONE
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• Spatial flatness to 1% from CMB alone

– Improves to ΩK = −0.0005± 0.0033 including BAO
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NEUTRINO MASSES
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• Planck TT constraint driven by lens smoothing

• Constraints degrade allowing for curvature [e.g.
∑
mν < 0.32 eV (95%;

Planck+WP+highL+BAO)]
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SUMMARY

• Seven acoustic peaks measured in TT spectrum

• Lensing deflection spectrum measured at 25σ

• Excellent consistency on intermediate and small scales with LCDM

– But lack of power on large scales “drives” several marginal (2σ) results: AL

and dns/d ln k

• Also some tensions with SNe Ia and direct H0 measurements

– Relieved with new physics (e.g. Neff) but not favoured significantly by Planck

• Expect better polarization, lensing etc. in future releases
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