Curvaton and other spectators

Kari Enqvist

Helsinki University and Helsinki Institute of Physics contents:

spectator dynamics

1. during

2. after

inflation

dynamics unknown

slow rolling scalar(s)?

light scalar spectators exist

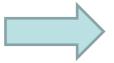
 $m \ll H_*$

 $\rho_{\sigma} \ll \rho_{\text{inf}}$

example: the **higgs**

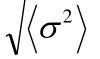
others?

higgs as inflaton?



spectators fluctuate

mean field



initial conditions for post-inflationary dynamics

field perturbations

$$\delta\sigma \approx H_*$$

isocurvature perturbation

spectators

can play a dynamical role after inflation

- 1. because of their field perturbations
 - -modulated (p)reheating $\Gamma_{inf} = \Gamma(\sigma)$

-modulated end of inflation $t_{end} = t(\sigma)$

-conversion of isocurvature into adiabatic (curvaton)

2. because of their classical evolution

-flat directions & Affleck-Dine BG

-moduli problems

DURING INFLATION

massless scalars in an expanding background

stochastic treatment

(cf. Starobinsky)

Langevin (simplified):

decompose field into UV and IR parts:

$$\Phi_{IR} \propto \int dk W(k,t) \phi_k(t)$$
$$W(k,t) = \theta (k - xaH)$$

$$\dot{\Phi}_{IR} = -\frac{\partial}{3H\partial\Phi}V(\Phi_{IR}) + s(x,\eta)$$
 k<k<k<k<k<k<k<k<k<k<k<k<k<k<k<k<k<k<k<k<k<k<k<k<k<k<k<k<k<k<k<k<k<k<k<k<k<k<

stochastic term, white noise correlators

$$\langle SS \rangle (dN) = (1+x^3) \frac{H^2 dN}{4\pi^2}, \quad k = xa(N)H$$

inflationary fluctuations

massless field

$$\left\langle \phi^2 \right\rangle = \frac{1}{4\pi^2} H^2 N$$

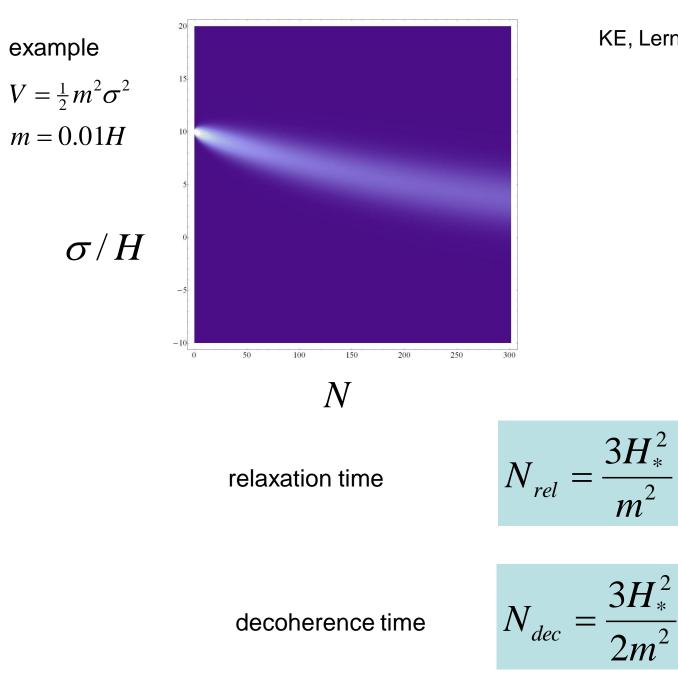
N = # of efolds

evolution of pdf: Fokker-Planck

$$\frac{\partial P}{\partial t} = \frac{1}{3H} \frac{\partial}{\partial \phi} \left[V'(\phi) P \right] + \frac{H^3}{8\pi^2} \frac{\partial^2}{\partial \phi^2} P$$

equilibrium pdf:

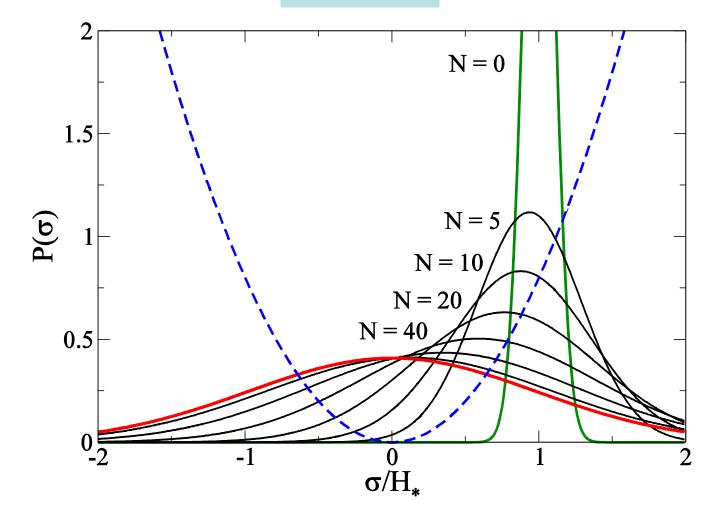
$$P \propto \exp(-8\pi^2 V/3H^4)$$



KE, Lerner, Taanila, Tranberg

 $\overline{m^2}$

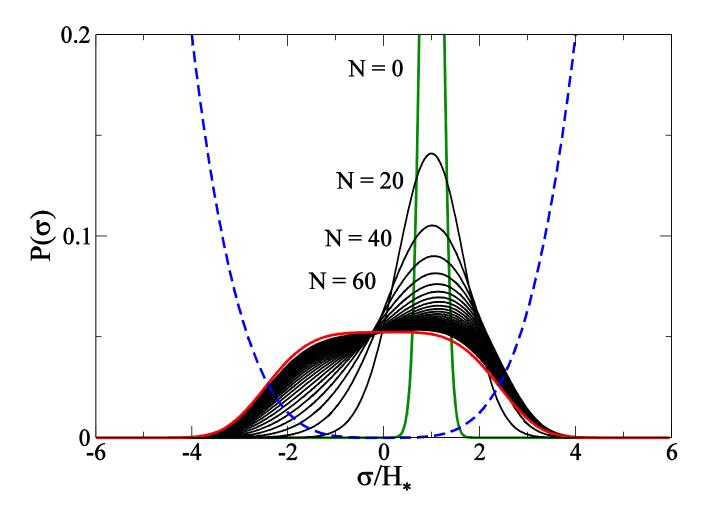
 $m/H_* = 0.2$



quartic potential

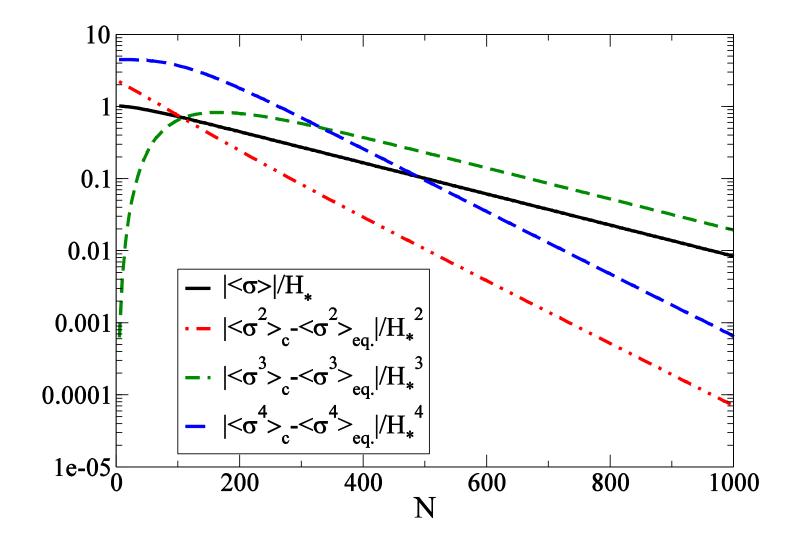
$$V = \frac{1}{4} \lambda \phi^4$$

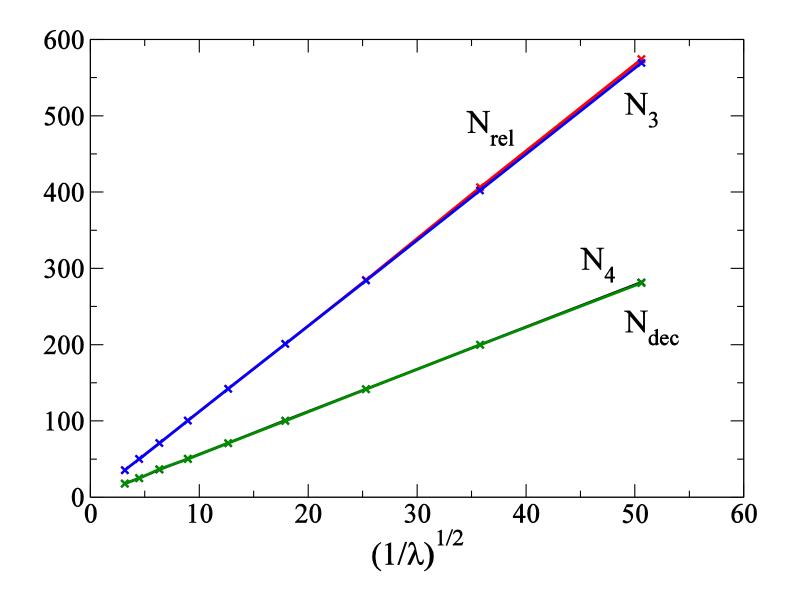




quartic potential

$$V = \frac{1}{4} \lambda \phi^4$$





relaxation time

 $N_{rel} \approx$

decoherence time

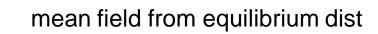
$$N_{dec} \approx \frac{5.65}{\sqrt{\lambda}}$$

Example: the higgs

$$V \approx \frac{1}{4} \lambda h^4$$

RGE $\rightarrow \lambda \approx 0.01$ at inflationary scales

decoherence at ~ 60 efolds



$$h_* \approx 0.36 \lambda^{-1/4} H_* \approx 1.1 H_*$$

effective higgs mass

$$m_{h_*}^2 \approx V''(h_*) = 0.40\lambda^{1/2}H_*^2 = 0.04H_*^2$$

mean field can matter:

flat directions

V=0 along a ray in field space; e.g. MSSM

fluctuations along flat directions \rightarrow cosmological consequences when decay

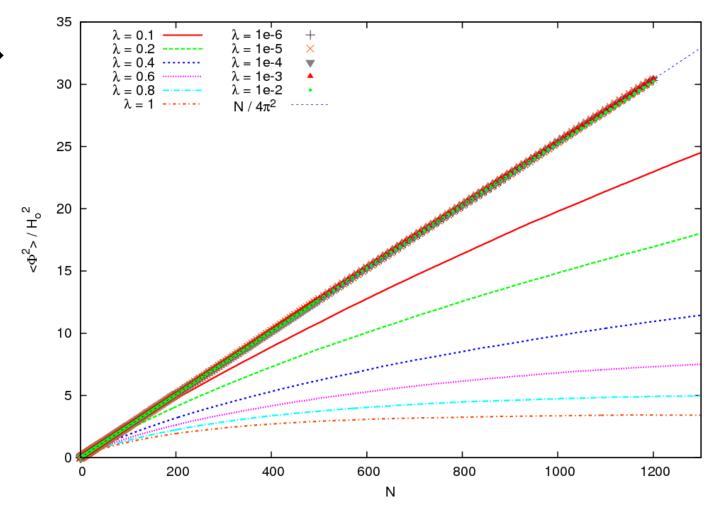
baryogenesis a la Affleck-Dine etc

Figueroa, KE, Rigopoulos

schematically

 $V(\phi,\chi) \approx \lambda^2 \phi^2 \chi^2 + g^2 \chi^4$

Langevin eqs \rightarrow

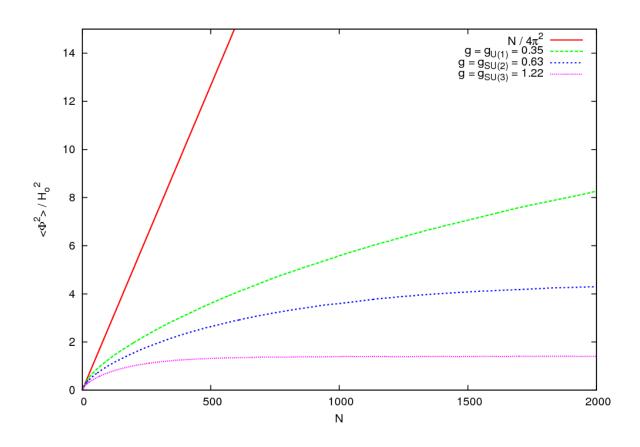


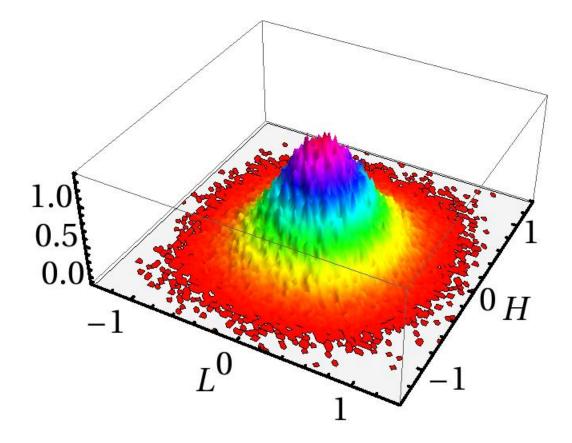
initial condition: all fields at origin

consider MSSM D-term only with

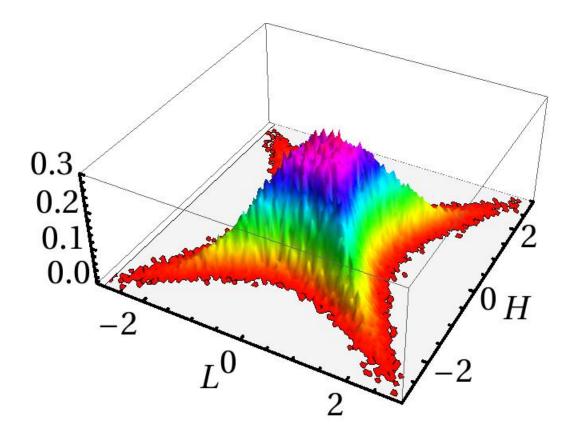
$$V(L,H) = \frac{g^2}{8} \left(L^2 - H^2 \right)^2$$

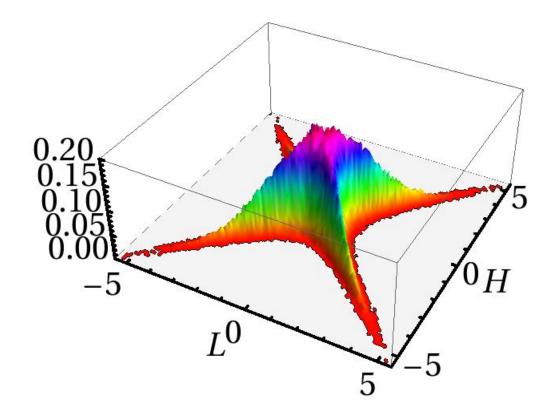
all other = 0 but allow fluctuations to displace fields from the flat direction L = H

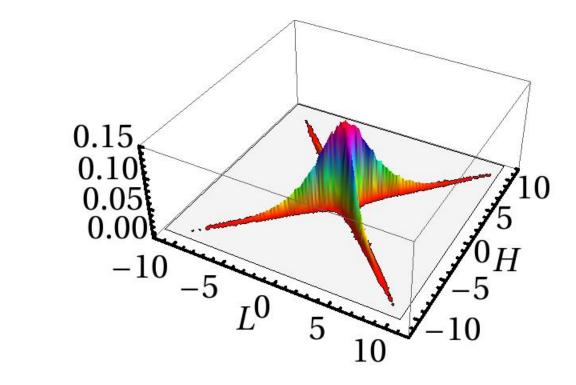


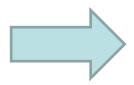


SU(2)









flat direction amplitude

blocked by fluctuations of non-flat directions

if fields initially at the origin

$$V(\phi, \chi) = \frac{1}{2} g^2 \phi^2 \chi^2 + \frac{1}{2} m^2 \chi^2$$

$$m_{\phi}^{2} = \frac{1}{2} g^{2} \chi^{2}$$
 "light field"
$$m_{\chi}^{2} = \frac{1}{2} m^{2} \chi^{2} + \frac{1}{2} g^{2} \phi^{2}$$
 "heavy field"

initially $\langle \phi \rangle = \phi_0 \Longrightarrow m_{\chi}^2(0) = g^2 \phi_0^2 >> H^2$

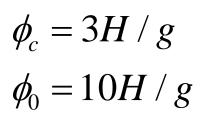
dynamics depends on coarse graining scale

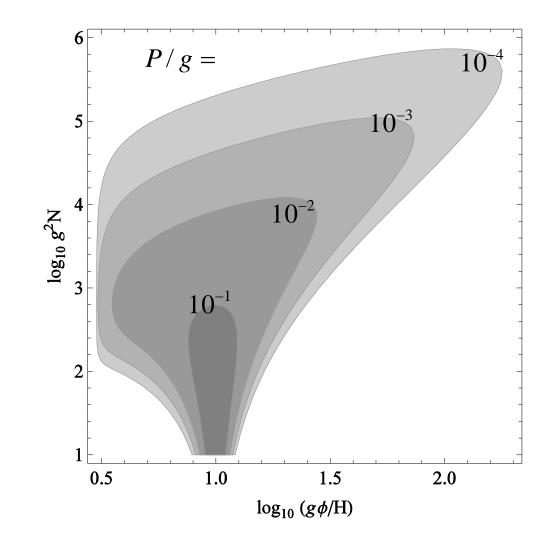
there is a cross-over scale below which both fields become light as ϕ random walks $\rightarrow 0$

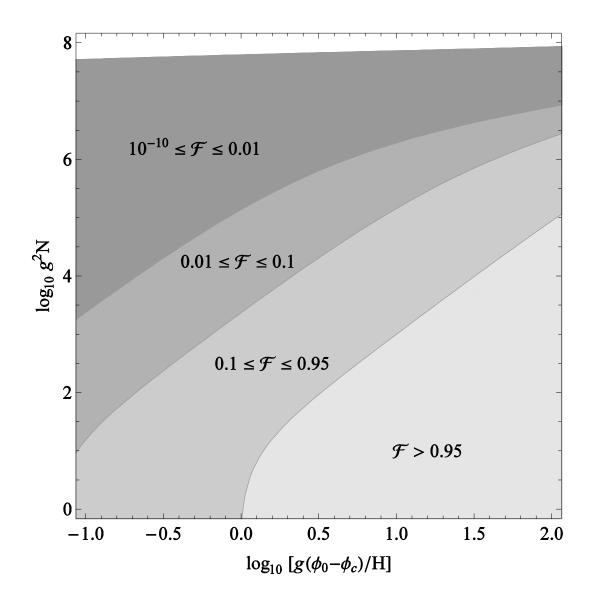
probability for trapping of fields around the origin

cross-over scale at $\phi = \phi_c \approx few \times H / g$

"absorbing barrier"







if a spectator remains around for some time after inflaton decay, it can generate the observed curvature perturbation

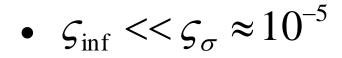
the curvaton

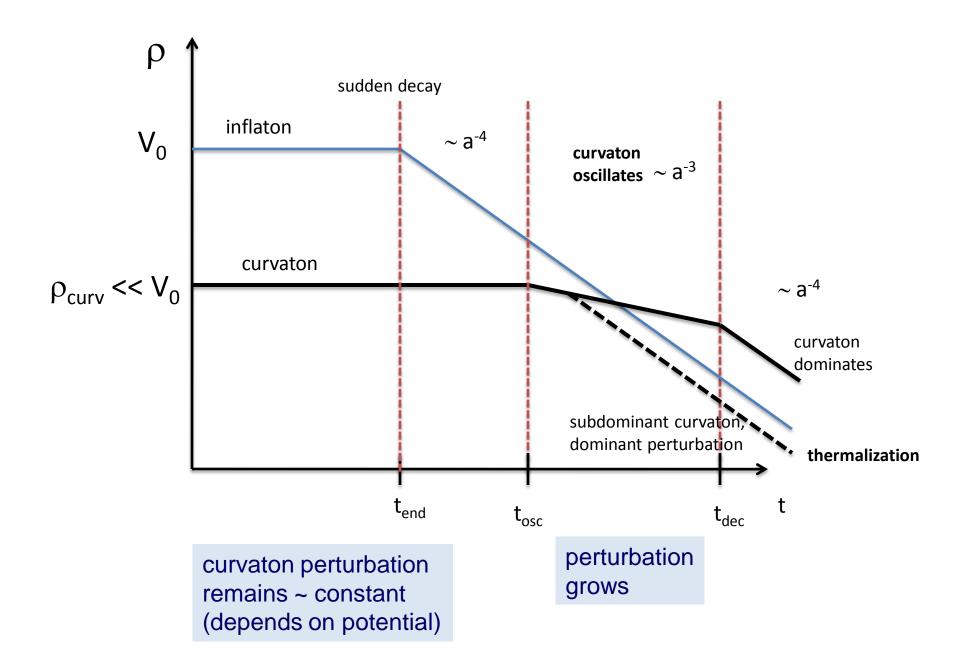
curvature perturbation generated after inflation

require

curvaton decay products thermalize with radiation

initial curvaton isocurvature perturbation is transformed to an adiabatic perturbation





curvature
perturbation
$$\zeta = \frac{H_*}{3\pi\sigma_*} r_{eff} \approx 10^{-5}$$
 $r_{eff} \approx r_{dec} = \frac{3\rho_{\sigma}}{3\rho_r + 4\rho_{\sigma}}$

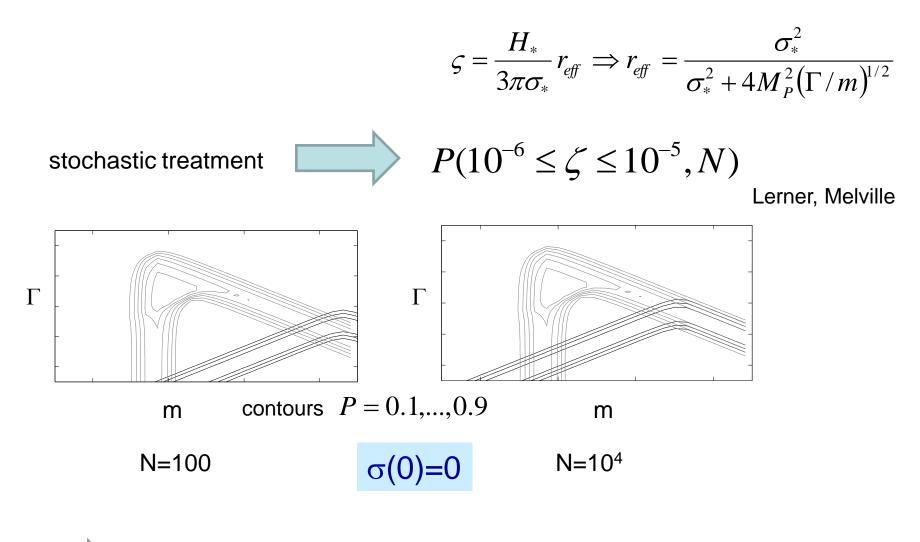
$$V = \frac{1}{2}m^2\sigma^2$$

simplest potential

$$f_{NL} \approx \frac{3}{8r}$$

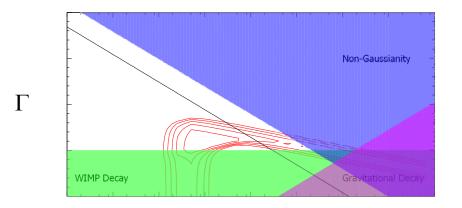
large non-gaussianity = subdominant curvaton

Initial condition for the curvaton field?



need a very large number of efolds

$H = 10^{10} \text{ GeV}$



m

constraints on probable models

N.B.: interactions are important

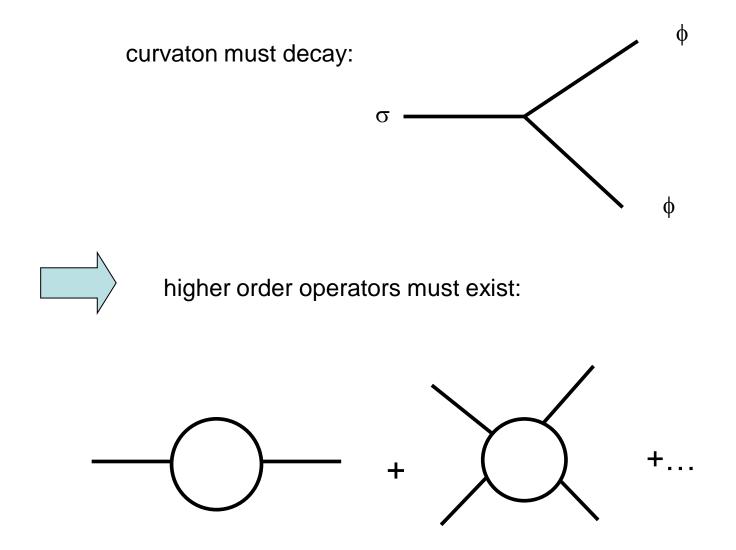
- large field values \rightarrow probe interaction terms

- interactions \rightarrow non-linearities

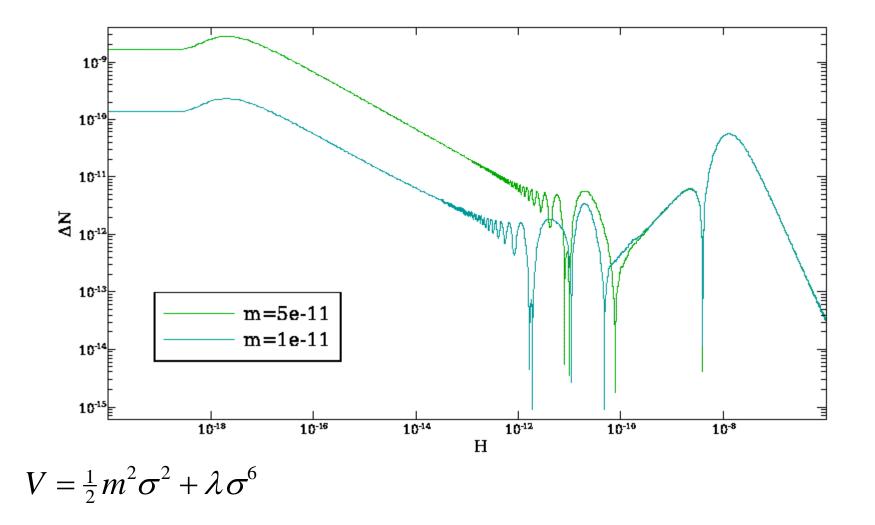
non-linearities: sensitivity to the initial condition

- in particular: non-gaussianity

$$f_{NL} \approx \frac{3}{8r} \rightarrow \frac{3}{8r} - g(n, \lambda)$$



perturbation sensitive to non-linearities:



KE, Nurmi, Taanila, Rigopoulos, Takahashi

CURVATON DECAY

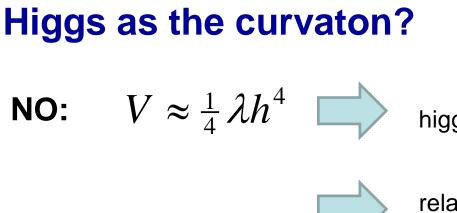
the amplitude of the curvature perturbation depends on the time of decay of the curvaton

must account for the decay mechanism

OPTIONS

1. throw in a Γ

2. couple the curvaton to SM and compute



Choi & Huang de Simone, Perrier, Riotto

higgs oscillations behave as radiation

relative density does not grow

but could be a field modulating either a) end of inflation or b) inflaton decay rate

N:B:: need precise calculations – 2-loop RGE

 $\lambda(H_*) \approx 0.01, g(H_*) \approx 0.5$

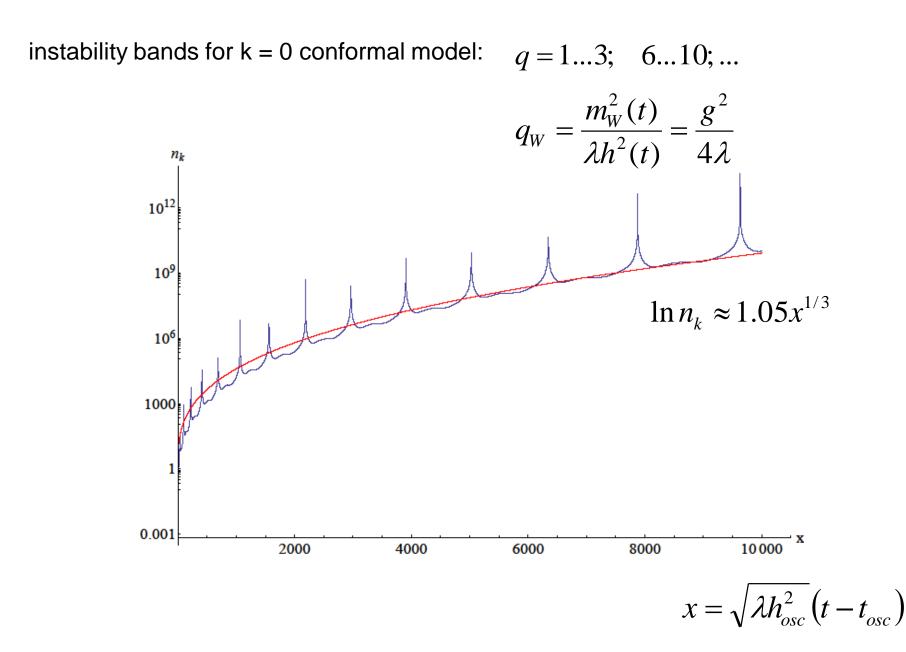
HIGGS MODULATED (P)REHEATING

KE, Meriniemi, Nurmi

must require: higgs does not decay before the inflaton

- perturbative top- and W, Z channels blocked
- fastest perturbative channel is bb very slow
- decay by resonant production of gauge bosons
- higgs self-decay at the edge of instability band weak

non-perturbative decay of the higgs into gauge bosons



		¢		
H_*/GeV	λ	(q_W, μ_k)	(q_Z, μ_k)	n_{ϕ}^{res}
104	0.09	(1.1, 0.14)	(1.5, 0.23)	170
107	0.04	(2.3, 0.23)	(3.2, 0.00)	300
10 ¹⁰	0.01	(8.1, 0.24)	(12.2, 0.00)	380

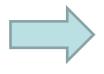
Table 1: Numerical values for μ_k and approximations for n_{\perp}^{res} with different H_s .

estimate the time

$$\rho_{W} \approx \rho_{h} = \frac{\lambda}{4} \left(\frac{h}{a}\right)^{4}$$

of inflaton oscillations before higgs decay

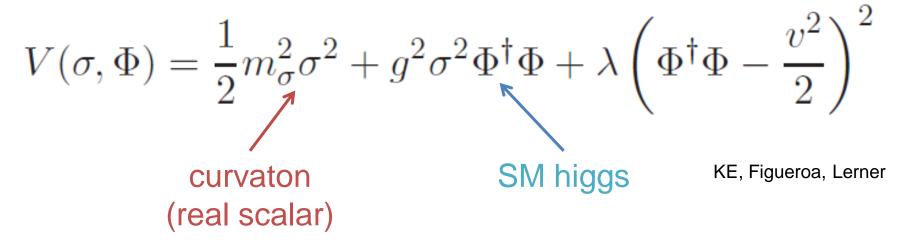
170...380
$$H_* = 10^4 \dots 10^{10}$$
 assuming $m_{\phi} \approx H_*$



curvature perturbation from higgs modulated (p)reheating implies rapid inflaton decay

Curvaton coupled to SM higgs

Only renormalisable coupling to standard model:



Free parameters: g, m_{σ} , σ^* , H^*

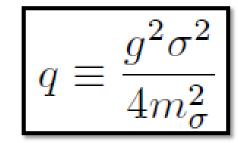
- no perturbative decay (no three-point coupling)
- but expect non-perturbative decay, just like preheating
- there is a thermal background from inflaton decay
- higgs has a thermal mass $m^2(H) = g_T^2 T^2, g_T^2 \approx 0.1$

resonant production of higgs particles

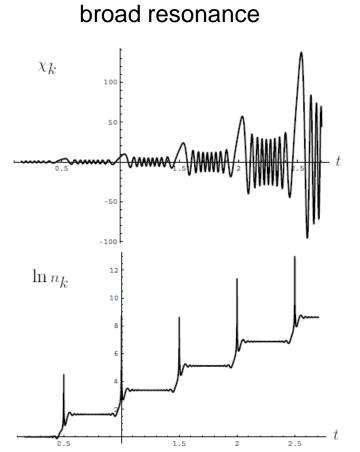
oscillating curvaton with zero crossings

production takes place at resonant bands

resonant parameter



- broad resonance:
 q >> 1
- narrow resonance:
 q << 1



Kofman, Linde, Starobinsky

- curvaton is oscillating
- higgs has mass $g\sigma$
- resonant production of higgs with momentum k
 - depends on the dispersion relation
 - requires non-adiabacity at zero crossing

corrected by thermal mass

(thermal background also induces mass for curvaton)

IR modes with $k < k_{kcut}$

$$K_{cut}(j) = \frac{k_{cut}(j)}{a} \approx j^{-3/8} \sqrt{gm\sigma_*}$$

jth zero crossing

(some differences between broad and narrow resonance)

need to consider

- as the curvaton is oscillating, the resonance parameter q also evolves
 unblocking: broad or narrow resonance?
- as the curvaton is oscillating, its relative energy density is increasing
 - unblocking: radiation or matter (=curvaton oscillation) dominated

dispersion relation

• Higgs equation of motion: j = time = # zero crossings

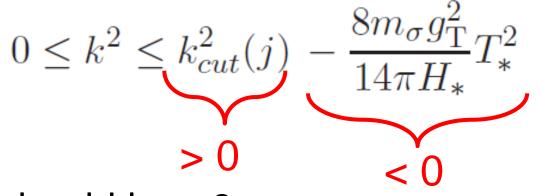
$$\frac{d^2\chi_{\alpha}}{dx^2} + \left(\kappa^2(j) + g_{\rm T}^2 a^2(j) \frac{T^2(j)}{k_{cut}^2(j)} + x^2\right)\chi_{\alpha} = 0$$

effective frequency:

$$\omega_k^2(j) = \kappa^2(j) + \frac{m_\sigma}{H_*} g_{\rm T}^2 \frac{8}{14\pi} \left(\frac{T_*}{k_{cut}(j)}\right)^2 + x^2$$

$$\kappa^{2}(j) \approx \left(\frac{K}{K_{cut}(j)} \right)^{2} \quad x \equiv K_{cut}(j)t$$

Adiabaticity violated if...



- RHS should be > 0
- Thermal mass of Higgs blocks resonance!
- Unblocked after **many** oscillations:

$$j \gtrsim j_{\rm NP}|_{RD} \equiv \frac{g_{\rm T}^8}{g^4 g_*^2} \left(\frac{M_P}{\sigma_*}\right)^4$$

it is not enough that the resonance becomes unblocked – energy must also be transferred to higgs particles

• if decay products do not thermalise:

$$\rho_H(j) \approx 0.028 f(q) q(j)^{1/4} \frac{\left(1 + \frac{2}{e}\right)^{\Delta j - 1}}{\left(\frac{1}{3} + \frac{(j_{\rm NP} + \Delta j)}{j_{\rm EQ}}\right)^2} \left(\frac{\sigma_*}{M_P}\right)^6 \frac{1}{\left(1 + \frac{\Delta j - 1}{(e/2 + 1)}\right)^{\frac{3}{2}}} \times (gm_\sigma \sigma_*)^2$$

where

$$f(q) \equiv 1 + \frac{2+e}{\exp(g_T q^{1/4} - 1)}$$

• if decay products thermalise ($m_{\sigma} \ll T(j_{\rm NP})$)

$$\rho_H(j_{\rm NP} + \Delta j) \approx \rho_H(j_{\rm NP}) \left[1 + \frac{1}{g_*} 0.01357 \, \Delta j \right]$$

but: for a range in parameters, thermal blocking persists until electroweak symmetry breaking

don't know what happens after that – assume that the curvaton decays

note: EWSB is not a phase transition but a smooth cross-over

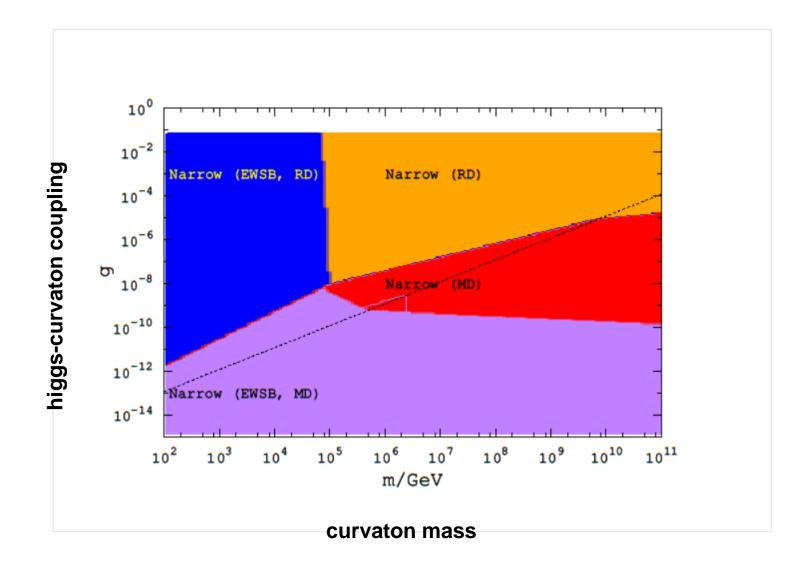
Possible timescales

e.g. narrow resonance in matter-domination

- depends on resonance parameter $q \equiv \left(\frac{g\sigma(t)}{2m}\right)^2$

- q decreases with time
- narrow resonance: $T_{\rm NP} = \frac{m_{\sigma}(1 + \mathcal{O}(q))}{m_{\sigma}(1 + \mathcal{O}(q))}$
- narrow resonance energy transfer:

$$\Delta j \simeq -\frac{\log(g^2 q^{1/2}(j_{\rm NP}))}{\pi q(j_{\rm NP})}$$



MORE DETAILS ...

KE, Lerner, Rusak

What actually happens at the onset of inflaton oscillation?

Inflaton decay not instantenous - radition background builds up

$$\rho_{\rm inf} = 3M_P^2 H_*^2 \left(\frac{a}{a_0}\right)^{-3} e^{-\Gamma t}$$

$$\rho_{SM} \approx \frac{6}{5} M_P^2 H_* \Gamma a^{-4} \left[a^{5/4} e^{-\Gamma t} - 1 \right]$$

$$T_{\max, SM} \approx 0.330 \left(M_P^2 H_* \Gamma\right)^{1/4}$$

